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Abstract. This paper introduces the hybrid quantum language with
general recursion Hyrql, driven towards resource-analysis. By design,
Hyrql does not require the specification of an initial set of quantum gates
and, hence, is well amenable towards a generic cost analysis. Indeed, lan-
guages using different sets of quantum gates lead to representations of
quantum circuits whose complexity varies. Towards resource-analysis, a
semantics-preserving compilation algorithm to simply-typed term rewrite
systems is described; allowing a generic reuse of all known techniques for
analyzing the complexity of term rewrite systems. We prove the versa-
tility of this approach through many examples.
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1 Introduction

Motivations. Most well-known quantum algorithms, such as Shor’s algorithm [49],
were historically designed on the QRAM model [33]. In this model, a program
interacts with a quantum memory through basic operations complying with the
laws of quantum mechanics. These operations include a fixed set of quantum
gates, chosen to be universal, as well as a probabilistic measurement of qubits.
Consequently, the control flow is purely classical, i.e., depends on the (classi-
cal) outcome of a measure. Based on this paradigm, several high-level quantum
programming languages have been introduced, each with different purposes and
applications, from assembly code [20,19], to imperative languages [27], tools for
formal verification [16], circuit description languages [29], and λ-calculi [48].

A relevant issue was to extend these models to programs with quantum con-
trol, also known as coherent control, enabling a “program as data” treatment for
the quantum paradigm. Quantum control consists in the ability to write super-
positions of programs in addition to superpositions of data and increases the
expressive power of quantum programming languages. It allows the program-
mer to write algorithms such as the quantum switch, which uses fewer resources
(quantum gates) than algorithms with classical control [17] and is physically
implementable [1,43]. Hence, quantum control provides a computational ad-
vantage over classical control [3,50,34]. In the last decades, several quantum
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programming languages implementing this concept have been designed, non-
exhaustively [2,44,25,38]. To get the best of both worlds, a natural next step
was the development of hybrid languages, i.e., languages that allow classical and
quantum flow/data to be combined. Such languages have also been deeply stud-
ied [51,30,53,22,10]. This keen interest is a direct consequence of the fact that
hybrid languages can be used to design variational quantum algorithms, a class of
quantum algorithms leveraging both classical and quantum computing resources
to find approximate solutions to optimization problems.

Since hybrid languages offer interesting prospects in terms of expressiveness
and optimal resource consumption, a relevant and open issue concerns the de-
velopment of resource-aware (static) analyses of their programs. These static
analyses could be applied to highlight and clarify the advantage of variational
algorithms over their QRAM-based counterparts.

Contributions. This paper solves the above issue for the first time by introducing
a HYbrid Recursive Quantum Language Hyrql on which a resource analysis can
be performed. Hyrql is a hybrid extension of the functional quantum language
Spm (Symmetrical pattern-matching) of [44,38]. In Spm, the programmer can write
down directly unitary applications, combining quantum superpositions of terms
with pattern-matching. Unitarity is enforced by a (decidable) linear typing dis-
cipline using an orthogonality predicate. Spm is, however, a purely quantum
language, which makes the manipulation (and, consequently, resource analysis)
of classical information awkward: they can be neither discarded, nor duplicated
by linearity. The hybrid nature of Hyrql relies on a typing discipline which delin-
eate a clear separation between quantum/linear and classical/non-linear data in
the typing contexts. Similarly to Spm, Hyrql does not include measurement: the
flow from quantum data to classical data is handled through the use of a shape

construct, as introduced in [29], which returns the classic structural information
on data containing quantum information, without getting any information on
the value of the quantum states. For example, the shape of a qubit list provides
classical (duplicable) information, such as the number of qubits. The decision to
provide Hyrql with a Spm-architecture was motivated by two important factors.
First, in contrast with most of its competitors, Spm does not require the inclusion
of an initial set of quantum gates, making its resource analysis generic. Second,
thanks to its pattern-matching design, Spm allows for the reuse of a wide variety
of tools designed for resource analysis (e.g., termination or complexity) of term
rewriting systems.

Our paper contains the following main contributions:

– The introduction of the hybrid language Hyrql with general recursion as well
as its operational semantics, type system, and standard properties: subject
reduction (Lemma 4), progress (Lemma 3), and confluence (Theorem 1).

– A proof that the orthogonality predicate in Hyrql is Π0
2 -complete, hence

undecidable (Theorem 2). Consequently, typing is not decidable. This is
not surprising as the language encompasses general recursion. The decid-
ability of typing can still be recovered, on expressive sub-fragments of the



Resource-Aware Hybrid Quantum Programming 3

Hyrql FOQ[30] Qunity[51] DLPZ[22] Spm[44] QuGCL[53] λ-S1[25]
Hybrid ✓ ✓ ✓ ✓ ✗ ✗ ✗

General recursion ✓ ✓ ✗ ✗ ✓ ✓ ✗

Resource-aware ✓ ✓ ✗ ✗ ✗ ✗ ✗

Table 1. Comparison table between programming languages with quantum control

language, e.g., when Hyrql is restricted to finite types and terminating pro-
grams (Proposition 1).

– A compilation procedure (Algorithm 2) translating terms to (simply-typed)
term-rewrite system (STTRS, [52]). This translation is correct (Proposi-
tions 3 and 5) and, crucially, the runtime-complexity of evaluating a Hyrql-
program and the runtime-complexity of evaluating its STTRS-translation
are linked (Theorem 4). As a consequence, most known techniques (e.g.,
interpretations [39], recursive path orderings [23,24], dependency pairs [4],
size-change principle [37]) for analyzing the runtime of standard TRS can
be used to show termination or infer bounds on the complexity of Hyrql-
programs.

We illustrate the expressive power of the language and its resource analysis
through several examples: implementation of basic quantum gates (Hadamard
gate, Example 1), quantum control (quantum switch, Example 2), hybrid control
flow (protocol BB84 [11], Example 4), higher-order (map function, Example 12),
and general recursion (Ackermann function, Example 10).

Related works. In Table 1, we provide a non-exhaustive comparison between the
main families of programming languages with quantum control. Towards that
end, we consider the three following criteria.

– Hybrid indicates whether the language treats classical data as first-class
citizen and distinguishes between the languages Hyrql, FOQ [30], Qunity [51],
and DLPZ [22], that can be used to analyze variational algorithms, and those
which cannot. We have already discussed about Spm [44] and emphasized on
its lack of hybrid design. The language QuGCL [53] tries to solve the problem
of defining a quantum recursion on a purely-quantum language, which is
known to be a hard problem [13]. Finally, λ-S1 [25] is an algebraic purely-
quantum language aimed at guaranteeing unitarity.

– General recursion specifies whether the language includes unbounded recur-
sion. The ability to handle this type of recursion is necessary for a resource
analysis to be relevant (i.e., non trivial as in the case of strong normalizing
languages). The language Qunity [51] is hybrid and features a compilation
algorithm to quantum circuits. However it is terminating and hence does
not support general recursion. DLPZ [22] is another hybrid language, inspired
from Spm, with an adequate denotational semantics. However, DLPZ supports
neither general inductive types (with the exception of natural numbers), nor
general recursion. Note that this categorization does not distinguish between



4 K. Chardonnet et al.

(Values) v ::= x | |0⟩ | |1⟩ | c(−→v ) | λx.t | letrec f x = t | unit(t) |
∑n

i=1 αi · vi

(Terms) t ::= x | |0⟩ | |1⟩ | qcase t
{
|0⟩ → t0 , |1⟩ → t1

}
| c(−→t ) | match t {c1(−→x1)→ t1 , . . . , cn(

−→xn)→ tn}

| λx.t | letrec f x = t | unit(t) | t1t2

|
∑n

i=1 αi · ti | shape(t)

Table 2. Syntax of the Hyrql language

languages that have classical recursion and those that have quantum recur-
sion, such as QuGCL [53].

– Finally, Resource-aware highlights if the language is designed towards re-
source analysis. This is the case of Hyrql as well as FOQ [30,31], which char-
acterizes, under restrictions, quantum polynomial time as well as quantum
polylogarithmic time [28]. However Hyrql has a greater expressive power
than FOQ as it is not restricted to unitary operators. Moreover, all standard
classical datatypes can be expressed in Hyrql whereas FOQ is restricted to
lists of qubits.

Other studies have already been carried out on resource analysis in quantum
programming languages. They use techniques (e.g., type systems) developed in
the field of Implicit Computational Complexity (ICC, see [42]) to characterize
quantum complexity classes [21], to infer the expected cost or expected value of
a quantum program [6], or to infer upper bounds on quantum resources (depth
and size of circuits) [18]. However these studies are restricted to classical con-
trol. For example, [21] studies the use of soft linear logic [35] on a quantum
lambda calculus [47], [6] adapts expectation transformers on a language based
on QPL [46], and [18] develops a dependent type system on a variant of the Quip-
per circuit description language [29]. Still in the field of ICC, our translation to
STTRS follows a standard analysis pattern first introduced in [8], which con-
sists in compiling higher-order programs to STTRS, that are more amenable
for static/automatic complexity analysis. Hence our approach provides a first
application of this methodology in the quantum setting.

2 Hybrid Quantum Language with General Recursion

We introduce Hyrql syntax, operational semantics, and type system along with
illustrating examples.

2.1 Syntax

The syntax of Terms and Values in Hyrql is provided in Table 2. Terms feature
variables, noted x, y, f, . . . taken from an infinite countable set of variables Var.
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We denote by −→e a (finite and possible empty) sequence of elements e1, . . . , en.
Moreover, the notation F (−→e ) will be syntactic sugar for F (e1), . . . , F (en). Qubits
are introduced through basis states |0⟩ , |1⟩, and can be used in a quantum con-
ditional qcase t

{
|0⟩ → t0 , |1⟩ → t1

}
, which corresponds to the superposition of

t0 and t1 controlled by qubit t. Hyrql also features classical constructor sym-
bols c, which can be used in constructor application c(

−→
t ) and through pattern-

matching, sometimes abbreviated as match1≤i≤n t {ci(−→xi) → ti}. Each construc-
tor symbol c comes with a fixed arity and is always fully applied. We assume
the existence of standard inductive constructors for unit (), bits 0 and 1, natural
numbers 0 and S, and lists [ ] and ::. For convenience, constructors are sometimes
used in a infix notation. For example, tensor products will be written as x ⊗ y
or list constructors will be written as h :: t.

Higher-order is featured via three constructs: a standard λ-abstraction λx.t,
a letrec f x = t construct for general recursion, and a unit(t) construct for
unitary operators. Term application is denoted as t1t2.

Given amplitudes αi ∈ C, the term
∑n

i=1 αi · ti represents a superposition of
terms ti. In the special case where n = 2, we just write α1 · t1 +α2 · t2. In a dual
manner, the shape shape(t) construct, introduced in [29], returns the classic
structural information on data containing quantum information. For example,
the shape of a quantum list is a classical data computing the list structure.

We denote FV(t) as the free variables of t. In order to avoid conflicts be-
tween free and bound variables we will always work up to α-conversion and use
Barendregt’s convention [9, p. 26] which consists in keeping all bound and free
variable names distinct, even when this remains implicit.

Terms and Values have to be considered with respect to a vector space struc-
ture. Towards that end, we define an equivalence relation ≡ in Table 3, relying
on a notion of equivalence contexts, noted C≡, terms with a hole ⋄ which are
defined by the following grammar:

C≡ ::= ⋄ | qcaseC≡
{
|0⟩ → t0 , |1⟩ → t1

}
| c(−→t1 , C≡,

−→
t2 )

| match1≤i≤n C≡ {ci(−→xi) → ti} | tC≡ | C≡t | t+ C≡ | shape(C≡)

Let C≡[t] be the term obtained by filling the hole with t in C≡.
The rules of Table 3 make the definition of the Σ construct unambigu-

ous/sound, i.e., it corresponds exactly to repeated applications of +.

Example 1 (Quantum State and Hadamard Gate). We can define the orthogonal
basis states as |±⟩ ≜ 1√

2
· |0⟩ ± 1√

2
· |1⟩. The Hadamard gate can be encoded in

our language as the unitary term:

Had ≜ unit(λx.qcasex
{
|0⟩ → |+⟩ , |1⟩ → |−⟩

}
)

Example 2 (Quantum Switch). The Quantum Switch [17] can be defined as

QS ≜ λf.λg.λx.matchx
{
c⊗ t → qcase c

{
|0⟩ → |0⟩ ⊗ f(g t) , |1⟩ → |1⟩ ⊗ g(f t)

}}
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t1 + t2 ≡ t2 + t1 t1 + (t2 + t3) ≡ (t1 + t2) + t3 1 · t ≡ t t+ 0 · t′ ≡ t

α · (β · t) ≡ αβ · t α · (t1 + t2) ≡ α · t1 + α · t2 α · t+ β · t ≡ (α+ β) · t

qcase (

m∑
j=1

αj · sj)
{
|0⟩ → t0 , |1⟩ → t1

}
≡

m∑
j=1

αj · (qcase sj
{
|0⟩ → t0 , |1⟩ → t1

}
)

c(
−→
t1 ,

n∑
j=1

αj · sj ,
−→
t2 ) ≡

m∑
j=1

αj · c(
−→
t1 , sj ,

−→
t2 )

match1≤i≤n (

n∑
j=1

αj · sj) {ci(−→xi)→ ti} ≡
n∑

j=1

αi · (match1≤i≤n sj {ci(−→xi)→ ti})

C≡[t] ≡ C≡[t
′] when t ≡ t′

Table 3. Equivalence relation ≡ ⊆ Terms× Terms

Example 3 (Length of a list). Our language also allows us to define recursive
functions such as the length of a list:

len ≜ letrec f x = matchx
{
[ ] → 0, h :: t → S (f t)

}
Example 4 (Hybrid function — BB84 [11]). Hyrql is also able to use quan-
tum and classical data simultaneously. For example, the well-known protocol
BB84 [11], creating a quantum key from a classical key can be implemented as
follows:

not ≜ λq.qcase q
{
|0⟩ → |1⟩ , |1⟩ → |0⟩

}
cc ≜ λb.λf.λq.match b

{
0 → q, 1 → f q

}
op ≜ λq.λn.matchn

{
(x, h) → cch Had(ccx not q)

}
keygen ≜ letrec f l = match l

{
[ ] → [ ], h :: t → (op |0⟩ h) :: (f t)

}
The term cc applies a gate f conditionally with classical control on a bit b.

The term op reads a pair (x, h), and applies the NOT gate if x = 1, and then
applies the Hadamard gate if h = 1. Finally, keygen generates the qubit list key.

2.2 Operational Semantics

In this section, we define the call-by-value operational semantics of Hyrql. To-
ward that end, we introduce the notions of pure terms and canonical form. Pure
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(Qcase0)
qcase |0⟩

{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t0 qcase |1⟩

{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t1

(Match)
match1≤i≤n cj(

−→v ) {ci(−→xi)→ ti}⇝ tj{−→v /−→xj}
(Lbd)

(λx.t)v ⇝ t{v/x}

(Fix)
(letrec f x = t)v ⇝ t{letrec f x = t/f, v/x}

(Unit)
unit(t)v ⇝ tv

∑n
i=1 αi · ti ∈ CAN \Value ti ⇝? t′i

(Can)∑n
i=1 αi · ti ⇝

∑n
i=1 αi · t′i

(Shape0)
shape(|0⟩)⇝ ()

(Shape1)
shape(|1⟩)⇝ ()

(Shapec)
shape(c(−→v ))⇝ c̃(shape(−→v ))

∑n
i=1 αi · vi ∈ CAN

(Shapes)
shape(

∑n
i=1 αi · vi)⇝ shape(v1)

t ≡ t1 t1 ⇝ t′1 t′1 ≡ t′
(Equiv)

t⇝ t′

t⇝ t′ E[t] ∈ Pure terms
(E)

E[t]⇝ E[t′]

Table 4. Reduction rules of the language

terms are defined by the following syntax:

(Pure terms) p ::= x | |0⟩ | |1⟩ | qcase p
{
|0⟩ → t0 , |1⟩ → t1

}
| c(−→p )

| match1≤i≤n p {ci(−→xi) → ti} | λx.t | letrec f x = t

| unit(t) | t1t2 | shape(t)

A pure value is a pure term that is a value.

Definition 1 (Canonical form). The canonical form of a term t is any term
t′ such that t′ ≡ t and t′ =

∑n
i=1 αi · pi, where αi ̸= 0 and pi ≡ pj implies i = j.

Let CAN be the set of canonical forms.

As we will see shortly, canonical forms will ensure that no term with a null
amplitude is ever reduced, i.e., reductions are meaningful. Furthermore, any pure
value for either qubits or constructor terms will contain no superposition, giving
the intuition of a canonical basis; this will be used to define the inner product
in Subsection 2.3. Note that the naming pure terms comes from [25] and is not
related to pure states in quantum computing as pure terms could semantically
yield a mixed quantum state.

The notion of evaluation contexts will be used to define the operational se-
mantics and is described by the following grammar:
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(Eval. contexts) E ::= ⋄ | qcaseE
{
|0⟩ → t0 , |1⟩ → t1

}
| c(−→t , E,−→v )

| match1≤i≤n E {ci(−→xi) → ti} | tE | Ev | shape(E)

Again, let E[t] be the term obtained by filling the hole ⋄ with t in E.
The operational semantics of Hyrql is described in Table 4 as a reduction

relation ⇝ ⊆ Terms×Terms, where {t/x} denotes the standard substitution of
variable x by term t. The reduction implements a call-by-value strategy.

In all rules of Table 4, except for the (Can) and (Equiv) rules, the left-hand-
side term is a pure term (i.e., not a superposition). In the rule (Can), t ⇝? t′

holds if either t⇝ t′ or, ¬(∃t′′, t⇝ t′′) and t′ = t. Intuitively, it means that we
apply one reduction in each element of a superposition, when possible. Moreover,
any summation must be expressed in a canonical form before reducing, which
avoids reducing a subterm with a null amplitude, or more generally to reduce
two identical terms that would sum up to 0. The goal is to avoid reductions that
have no physical meaning, as this would invalidate all resource analysis results.

We define ⇝∗ as the reflexive and transitive closure of ⇝ modulo the equiv-
alence ≡. For k ∈ N, we also write t ⇝≤k t′, when t reduces to t′ in at most
k steps. Finally, a term t terminates, if any chain of reduction starting from t
reaches a value, meaning that t⇝≤k v holds for some k.

Example 5. Let us consider the Had program from Example 1, we can check that
it gives the desired result when applying it to |0⟩:

Had |0⟩⇝ (λx.qcasex
{
|0⟩ → |+⟩ , |1⟩ → |−⟩

}
) |0⟩ via (Unit)

⇝ qcase |0⟩
{
|0⟩ → |+⟩ , |1⟩ → |−⟩

}
via (Lbd)

⇝ |+⟩ via (Qcase0)

Since the Hadamard gate is its own inverse we can recover |0⟩. First, let the term
hv = qcase v

{
|0⟩ → |+⟩ , |1⟩ → |−⟩

}
, then:

Had |+⟩⇝ (λx.qcasex
{
|0⟩ → |+⟩ , |1⟩ → |−⟩

}
) |+⟩

⇝ h|+⟩ ≡
1√
2
· h0 +

1√
2
· h1

⇝
1√
2
· |+⟩+ 1√

2
· |−⟩ ≡ |0⟩

Example 6. Given a qubit list l = |0⟩ :: |1⟩ :: |+⟩ :: [ ], one can verify that
shape(l) ⇝∗ () :: () :: () :: [ ]. The result is a list of same length as l, with
no quantum data anymore, hence it can be treated non-linearly. Note that such
operation is independent from the value of each qubit in the list.

2.3 Type System

Types in Hyrql are provided by the following grammar.

(Types) T ::= Qbit | B | T ⊸ T | T ⇒ T | T ↔ T
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Qbit is the type for qubits and B is a constructor type from a fixed set B.
A basic type, noted B|⟩, is either a qubit type, or a constructor type B, i.e.,
B|⟩ ∈ {Qbit} ∪ B. Each constructor type B ∈ B comes with a fixed set of
constructor symbols Cons(B) such that B ̸= B′ implies Cons(B)∩Cons(B)′ = ∅.
Each constructor symbol c ∈ Cons(B) of arity n has a fixed signature c ::

B
|⟩
1 , . . . , B

|⟩
n → B. We just write c :: B when n = 0. In what follows, we will

consider the following constructor types: a unit type 1 with a unique constructor
() :: 1; tensor types B

|⟩
1 ⊗B

|⟩
2 for given types B

|⟩
1 , B

|⟩
2 with a unique constructor

tens :: B
|⟩
1 , B

|⟩
2 → B

|⟩
1 ⊗B

|⟩
2 , denoted x⊗ y when applied; natural numbers nat

with constructors 0 :: nat and S :: nat → nat; lists list(B|⟩) for a given type
B|⟩, with constructors [ ] :: list(B|⟩) and cons :: B|⟩, list(B|⟩) → list(B|⟩),
denoted h :: t when applied. We consider that B always contains the unit type
1.

The language also features three distinct higher-order types for linear, non-
linear, and unitary functions, denoted respectively by⊸, ⇒, and ↔.

In the typing discipline, it will be useful to distinguish between types based
on whether or not they contain quantum data. The latter must follow the laws
of quantum mechanics (no-cloning), whereas classical types are more permissive.
Toward that end, we define the set of quantum constructor types BQ by BQ ≜

{B ∈ B | ∃ c :: B
|⟩
1 , . . . , B

|⟩
n → B, ∃ 1 ≤ i ≤ n,B

|⟩
i ∈ BQ ∪ {Qbit}}. A quantum

constructor type BQ ∈ BQ has (at least) a constructor symbol with a type Qbit or
(inductively) a quantum constructor type in its signature. The set BC of classical
constructor types BC is defined by BC ≜ B \ BQ. For example, 1, nat ∈ BC

whereas list(Qbit) ∈ BQ.
Now, we can split the types between quantum types Q and classical types C.

Q ::= Qbit | BQ C ::= BC | T ⊸ T | T ⇒ T | T ↔ T

We define typing contexts as follows:

Γ,∆ ::= ∅ | {x : T} | {[x : T ]} | Γ ∪∆,

where [x : T ] is called a boxed variable, indicating that x is a linear variable
captured by shape. As we have mentioned, the language features both classical
(duplicable and erasable) and quantum (non duplicable and non erasable) data.
A typing judgment is thus written Γ ;∆ ⊢ t : T , describing the fact that under
non-linear context Γ and linear context ∆, the term t has type T . Such judgment
is then derived inductively following the rules of Table 5. Whenever we write Γ,∆
or Γ ;∆, it is assumed that Γ and ∆ are compatible, that is, no variable appears
twice in Γ ∪∆, considering that a boxed variable is distinct from the unboxed
one. We use the shorthand notation −→x :

−→
T for x1 : T1, . . . , xn : Tn. The key

points of the type system are the following:

– In both (qcase) and (sup), we ask that terms are orthogonal, written s ⊥ t
and formalized in Definition 2. This is akin to the orthogonality condition
that we found in quantum physics, and similar to other existing languages
[25,38,22].
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Γ ;x : T ⊢ x : T Γ, x : C;∅ ⊢ x : C Γ ;∅ ⊢ |0⟩ : Qbit Γ ;∅ ⊢ |1⟩ : Qbit

Γ ;∆ ⊢ t : Qbit Γ ;∆′ ⊢ t0 : T Γ ;∆′ ⊢ t1 : T t0 ⊥ t1
(qcase)

Γ ;∆,∆′ ⊢ qcase t
{
|0⟩ → t0 , |1⟩ → t1

}
: T

Γ ;∆i ⊢ ti : B
|⟩
i c :: B

|⟩
1 , . . . , B

|⟩
n → B

Γ ;∆1, . . . ,∆n ⊢ c(t1, . . . , tn) : B

ci ::
−→
Ci,
−→
Qi → B

Cons(B) = {ci}ni=1

Γ ;∆ ⊢ t : B

Γ,−→yi :
−→
Ci;∆

′,−→zi :
−→
Qi ⊢ ti : B

|⟩

(match)
Γ ;∆,∆′ ⊢ match t

{
c1(
−→y1,−→z1)→ t1 , . . . , cn(

−→yn,−→zn)→ tn
}
: B|⟩

Γ ;∆,x : T ⊢ t : T ′

Γ ;∆ ⊢ λx.t : T ⊸ T ′

Γ, x : C;∆ ⊢ t : T

Γ ;∆ ⊢ λx.t : C ⇒ T

Γ, f : T ;∅ ⊢ λx.t : T

Γ ;∅ ⊢ letrec f x = t : T

Γ ;∅ ⊢ t : Q⊸ Q′ t is unitary

Γ ;∅ ⊢ unit(t) : Q↔ Q′

Γ ;∆ ⊢ t1 : T ⊸ T ′ Γ ;∆′ ⊢ t2 : T

Γ ;∆,∆′ ⊢ t1t2 : T ′

Γ ;∆ ⊢ t1 : C ⇒ T Γ ;∅ ⊢ t2 : C

Γ ;∆ ⊢ t1t2 : T

Γ ;∅ ⊢ t1 : Q1 ↔ Q2 Γ ;∆ ⊢ t2 : Q1

Γ ;∆ ⊢ t1t2 : Q2

Γ ;∆ ⊢ ti : Q
∑n

i=1 |αi|2 = 1 ∀i ̸= j, ti ⊥ tj
(sup)

Γ ;∆ ⊢
∑n

i=1 αi · ti : Q

Γ ;∆ ⊢ t : B|⟩

(shape)
Γ, [∆];∅ ⊢ shape(t) : shape(B|⟩)

Γ, [x : B|⟩];∆, y : B|⟩ ⊢ t : T σ = {y/x}
(contr)

Γ ;∆, y : B|⟩ ⊢ σ(t) : T

Γ ;∆ ⊢ t : T t ≡ t′
(equiv)

Γ ;∆ ⊢ t′ : T

Table 5. Typing rules of the language
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– In the rule (match), we assume that the inputs of each constructor are or-
dered, containing first classical, then quantum variables, enabling a hybrid
behaviour.

– The rule (shape) extracts the classical structure of a quantum term, boxes
any variable in ∆, and puts it in Γ . The term obtained has an empty linear
context and a type in BC as discussed in Definition 4, and thus can be seen
and used classically.

– The rule (contr) binds a boxed variable x with a linear variable of same
type y, allowing to read both the quantum data and the classic structural
information of y.

In order for the rules to be well-defined, we need to introduce two predicates:
one about the orthogonality of terms, which allows us to put them into super-
position, and one about the unitarity of terms, meaning that a term describes
a unitary operation. Note that the rules requiring a predicate apply it only to
well-typed terms, thus our type system is not ill-defined.

To do so, we first introduce inner products. It is defined for well-typed, ter-
minating and closed terms as follows:

⟨s, t⟩ =
n∑

i=1

m∑
j=1

αiβ
∗
j δvi,wj

,

where s ⇝∗ ∑n
i=1 αi · vi ∈ CAN t ⇝∗ ∑m

j=1 βj · wj ∈ CAN, and δv,w is the
Kronecker symbol. While the inner product requires a reduction to a canonical
form, we will see later than this can be generalized to any term. Given a context
∆, a ∆-context substitution is a substitution σ such that for any x : T with
x : T ∈ ∆ or [x : T ] ∈ ∆, {v/x} ∈ σ, where v is a well-typed closed value of
type T ′. This definition ensures that the substitution is well-founded, to preserve
typing of σ(t) and yield a closed term.

Definition 2 (Orthogonality). Let Γ ;∆ ⊢ s : B|⟩ and Γ ;∆ ⊢ t : B|⟩ be two
well-typed terms. We say that s and t are orthogonal, written s ⊥ t, if for any
Γ ∪∆-context substitution σ:

- σ(shape(s))⇝∗ v, σ(shape(t))⇝∗ w and v = w;
- ⟨σ(s), σ(t)⟩ = 0.

While the second condition computes the inner product to check orthogonal-
ity, the first one ensures both terms have the same classical structure, and only
differ on their quantum part; for example, orthogonality between lists requires
both lists to be of the same size.

This inner product allows us to define isometries as terms preserving the
inner product. A well-typed term Γ ;∆ ⊢ t : B

|⟩
1 ↣ B

|⟩
2 is said to be an isometry

if for any well-typed closed value v, w of type B
|⟩
1 , and any Γ ∪∆-context sub-

stitution, ⟨σ(t)v, σ(t)w⟩ = ⟨v, w⟩. In particular, this requires that t terminates
over any substitution and any input. In the same fashion, t is said to be surjec-
tive, if for any Γ ∪∆-context substitution and any ∅;∅ ⊢ w : B

|⟩
2 , there exists
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∅;∅ ⊢ v : B
|⟩
1 such that σ(t)v ⇝∗ w. Altogether, this allows us to define unitary

terms.

Definition 3 (Unitary term). Let Γ ;∆ ⊢ t : Q ⊸ Q′. We say that t is
unitary, if it is surjective and an isometry.

Finally, to properly define the rule (shape), we introduce two notations. First,
given a context ∆ = x1 : A1, . . . , xn : An, we use the notation [∆] for [x1 :
A1], . . . , [xn : An]; we also define the shape of a basic type below.

Definition 4. We define the shape of a basic type as follows:

shape(Qbit) ≜ 1 shape(B) ≜ B̃

where B̃ ∈ B is such that Cons(B̃) ≜ {c̃ :: shape(B
|⟩
1 , . . . , B

|⟩
n ) → B̃ | c ::

B
|⟩
1 , . . . , B

|⟩
n → B ∈ Cons(B)}.

By construction, it always holds that shape(B|⟩) ∈ BC . Therefore, any variable
with such type is classical, and can be used non-linearly. The shape of a term is
the classical structure of said term. For instance, the shape of a list of qubits is
a list of units, i.e., shape(list(Qbit)) = list(1).

Example 7. Coming back on Example 1, one can type ∅;∅ ⊢ Had : Qbit ↔
Qbit. Indeed, |+⟩ ⊥ |−⟩, thus qcase is typable, and the λ-abstraction satisfies
Definition 3.

Example 8. The term len from Example 3 cannot be typed if x has a quantum
type, as t is used non-linearly. However, for any B ∈ BC , len is a well-typed
closed term of type list(B) ⇒ nat. Given a list of qubits, we can still mea-
sure its length: t = λy.(len(shape(y)) ⊗ y) is a well-typed closed term of type
list(Qbit)⊸ nat⊗ list(Qbit).

The typing derivations of the examples seen thus far are available in Ap-
pendix A.

3 Properties of the language

This section is devoted to checking that Hyrql enjoys useful properties such as
confluence, to studying the complexity of the orthogonality predicate, and to
exploring the behaviour of linear and unitary functional terms.

First, by design of the type system, the non-linear context Γ can be expanded
and typing still holds.

Lemma 1 (Weakening). Let Γ ;∆ ⊢ t : T be a well-typed term. Then Γ, Γ ′;∆ ⊢
t : T holds for any context Γ ′ compatible with Γ,∆.

The reduction relation⇝ is confluent up to equivalence for well-typed terms.
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Theorem 1 (Confluence). Given a well-typed term t if there exist t1 and t2
such that t ⇝∗ t1 and t ⇝∗ t2, then there exist t3 and t4 such that t1 ⇝∗ t3,
t2 ⇝∗ t4 and t3 ≡ t4.

Equivalence is needed because of the reduction rule (Equiv). Typing is also
needed for (Shapes), to guarantee that we only have superpositions with terms
of the same shape. In particular, this implies that any terminating term has a
unique normal form, up to equivalence. This will be useful for progress (Lemma 3).

Lemma 2 (Canonical form for typed terms). Let Γ ;∆ ⊢ t : T be a well-
typed term. Then t has a canonical form

∑n
i=1 αi · ti, and this canonical form is

unique up to reordering and equivalence on the ti. Furthermore, Γ ;∆ ⊢ ti : T .

The unicity of canonical forms is useful to ensure orthogonality is not ill-
defined. However, orthogonality is undecidable in the general case. Indeed, it is
as hard as the Universal Halt Problem [26]. The reader may look at [41] for an
introduction on the arithmetical hierarchy. Note that, to be able to compute the
inner product, we have to compute addition, multiplication and nullity check
for complex numbers. Recall that algebraic numbers are complex numbers in C
that are roots of a polynomial in Q[X], and write their sets as C̄. In the field of
algebraic numbers, equality is decidable and product and sum are computable
in polynomial time [32]. We thus restrict ourselves to terms that contain only
amplitudes α ∈ C̄.

Theorem 2 (Undecidability of orthogonality). Deciding orthogonality be-
tween two well-typed terms is Π0

2 -complete.

This is not surprising as our language allows for general recursion. However,
it can be easily restricted to decidable cases. In order to do so, we introduce for
basic types a type depth d(B|⟩) ∈ N ∪ {+∞}, defined as follows:

d(Qbit) = 1 d(B) = max
c::B

|⟩
1 ,...,B|⟩

n →B
c∈Cons(B)

(

n∑
i=1

d(B
|⟩
i )) + 1

Note that d(B|⟩) is infinite for inductive types. We call finite types any type
with a finite depth.

Proposition 1. Given terms s, t that are well-typed, of finite type, closed, and
terminating, it is decidable whether they are orthogonal. More, if s, t terminate
in polynomial time, then orthogonality can be computed in polynomial time.

In previous works on Spm [15,14] the syntax of the language was restricted
enough to ensure the decidability of orthogonality. As Spm is a strict sublanguage
of Hyrql, this undecidability result is still true for this fragment of our language.

Typing implies that the values are the normal forms of the language, up to
equivalence.
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Lemma 3 (Progress). Let ∅;∅ ⊢ t : T be a closed term, either t is equivalent
to a value, or t reduces.

Typing is also preserved by reduction, provided we consider pure or termi-
nating terms.

Lemma 4 (Subject reduction). Let Γ ;∆ ⊢ t : T be a well-typed term, and
t⇝ t′. If t terminates or t is pure, then Γ ;∆ ⊢ t′ : T .

Remark 1. Hyrql fails to derive suject reduction for a non-terminating and non-
pure term. This is the case with the following example:

sa,b = qcase ((letrec f x = fx) |0⟩)
{
|0⟩ → |0⟩ ⊗ (a⊗ b) , |1⟩ → |1⟩ ⊗ (a⊗ b)

}
t = match

(
1√
2
· (|0⟩ ⊗ |0⟩) + 1√

2
· (|1⟩ ⊗ |1⟩)

){
a⊗ b → sa,b

}
t is well typed, but reducing it through (Equiv) gives t⇝ 1√

2
·s0,0+ 1√

2
·s1,1,

which is not typable: as s0,0 and s1,1 do not terminate, it is impossible to check
their orthogonality, thus to type their superposition.

Finally, our type system also gives us properties on terms with a linear func-
tional type. First, it behaves as a linear operator with respect to its inputs.

Proposition 2 (Linear functional terms). Let ∅;∅ ⊢ t : T1⊸ T2 such that
t w terminates for any input ∅;∅ ⊢ w : T1. For any ∅;∅ ⊢

∑n
i=1 αi · vi : T1,

there exist t1, t2 such that t (
∑n

i=1 αi · vi) ⇝∗ t1 and
∑n

i=1 αi · t vi ⇝∗ t2, and
t1 ≡ t2.

Furthermore, quantum linear terms satisfy our isometry definition.

Proposition 3 (Quantum linear terms are isometries). Let Γ ;∆ ⊢ t :
Q1⊸ Q2; if it terminates for any input, then t is an isometry.

This result allows us to simplify typing of unitary terms, by only checking
surjectivity. While this is still undecidable, Spm [45] gives a decidable criterion
implying surjectivity. Therefore, we could obtain a decidable fragment of unitar-
ity for a subset of terms expressible in Spm.

4 Resource Analysis based on Simply-Typed Term
Rewrite Systems

We are now interested in analyzing resource consumption in Hyrql, for example,
showing the termination of a given term, bounding the complexity of reducing
a term, or characterizing a given complexity class. Towards that end, we will
introduce a semantics-preserving and complexity-preserving compilation algo-
rithm TranslateEntry from terms of Hyrql to Simply-Typed Term Rewrite
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(Types) A ::= D | A1 × · · · × An → A

(Terms) t ::= xA | fA | cA | (tA1×···×An→A(t1
A1 , . . . , tn

An))A | (
∑n

i=1 αi · tiA)A

(Patterns) p ::= xA | (cD1×···×Dn→D(p1
D1 , . . . , pn

Dn))D

(Values) v ::= vA | fA | cA | (cD1×···×Dn→D(v1
D1 , . . . , vn

Dn))D | (
∑n

i=1 αi · viA)A

Table 6. Syntax of a STTRS

Systems (STTRS, for short) [52]. By complexity-preserving, we mean that each
reduction step in Hyrql can be simulated by at most a constant number of
reduction steps in the STTRS (Proposition 4). The significance of this result
is that all known tools and techniques developed for analyzing the complex-
ity/termination of Term Rewrite Systems can be reused to directly obtain com-
plexity/termination guarantees on hybrid quantum programs. Such techniques
have been deeply studied for term rewriting systems. Among the important refer-
ences on termination, we can cite polynomial interpretations [36], recursive path
orderings [23,24], dependency pairs [4], or size-change termination [37]; while on
complexity, we can cite quasi-interpretation [12], sup-interpretation [39], higher-
order interpretations [8], or polynomial path orders [40,5].

4.1 Syntax and Semantics of STTRS

The syntax of terms and types of STTRS in Table 6. Any type A is either
a data type D, which comes from a fixed and countable set, or a functional
type, represented with at least one occurence of →. D is assumed to contain
the datatypes used in Hyrql, in particular, {Qbit} ∪ B ⊆ D. The notation tA

indicates that term t has type A. The language features variables xA, function
symbols fA ∈ F , constructors cA, applications (tA1×···×An→A(t1

A1 , . . . , tn
An))A of

either functions or constructors, and superpositions (
∑n

i=1 αi · tAi )A. The set of
function symbols F contains two fixed function symbols unit((Q→Q′)×Q)→Q′

and
shapeB

|⟩→B .
We can now define formally what a STTRS is, by defining rewrite rules. Note

that we require rewrite rules to be orthogonal, meaning intuitively that a term
cannot reduce with two distinct rules, and any variable appears once in the left
part of a rule. For a more formal definition, the reader may look at [7, Ch.6].

Definition 5 (STTRS Definition). We define → as a binary relation on the
terms of a STTRS, where l → r implies:

– l and r are of the same type A,
– FV(l) ⊇ FV(r),
– l is of the shape l = f(−→p ), where f ∈ F and the pi are patterns.
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l → r is called a rewrite rule.
A simply-typed term rewriting system is a set R of orthogonal rewrite rules

such that each symbol f has the same arity in every rule defining it.

The reduction of STTRS is directly adapted from [8]: we say that s rewrites to
t, written s →R t, if there exists a rewrite rule l → r ∈ R, a substitution σ, and
a TRS-context C such that s = C[σl] and t = C[σr]. To take superposition into
account, we need to define an equivalence relation ≡R on terms of a STTRS and
we say that a superposition rewrites to another if at least one of its components
can be rewritten and, similarly to rule (Can) of the reduction of Hyrql, the
result of rewriting a superposition is the superposition of the rewritings of each
component that can be rewritten: intuitively,

∑n
i=1 αi ·si →R

∑n
i=1 αi ·ti where

αi ̸= 0 and si are pure terms, if for any 1 ≤ i ≤ n, either si is a value and si = ti,
or si →R ti according to the standard definition. The full formal definition of
the semantics of STTRS is given in Definition 8 in Appendix.

4.2 Transpilation from Terms to STTRS

Now that we have introduced STTRS, our main goal is to provide a link between
both worlds. We provide an algorithm that translates any well-typed term of
Hyrql into a STTRS, inductively on the syntax, mainly by creating branches
for each match and qcase. The algorithm TranslateEntry (Algorithm 3 in
Appendix) satisfies the following result:

Proposition 4. For any well-typed Hyrql term t, R = TranslateEntry(t) is a
well-defined STTRS. Furthermore, if R terminates on any input s in time f(|s|),
then t s reduces in O(|s|3 f(|s|)) and Ω(f(|s|)) steps.

In particular, this means that termination of a STTRS produced by the
algorithm TranslateEntry implies the termination of the Hyrql term; and if said
STTRS terminates in polynomial time, then so does the Hyrql term. Therefore
termination and complexity analysis techniques for TRS and STTRS directly
give corresponding results for our language.

Note that TranslateEntry transforms terms into a subset of terms called
admissible terms while preserving semantics. This transformation is responsible
for the |s|3 factor. TranslateAdmissible (Algorithm 2 in Appendix) is then
called on an admissible term and produces a rewrite system whose runtime
complexity is linear in that of the admissible term.

4.3 Illustrating Examples

In this section, we develop examples of Hyrql programs to show how they trans-
late into STTRS and study their complexity, termination.

Example 9 (Hadamard function). We start by giving a feel of the translation
of Hyrql into STTRS with the Hadamard program from Example 1. Doing so
results in the following STTRS:

R = {hadR |0⟩ → |+⟩ , hadR |1⟩ → |−⟩},
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where hadR is the function symbol corresponding to the initial term. This straight-
forwardly gives us the expected behavior.

Example 10 (Ackermann’s function). As our language is hybrid, it can encode
well-known classical recursive functions. For example, Ackermann’s function can
be written into Hyrql by the term t given below, with its corresponding STTRS
R:

t = letrec f m = λn.matchm


0 → S n

S m′ → matchn

{
0 → f m′ 1

S n′ → f m′ (f (S m′)n′)

}
R =


ack(0, n) → S n

ack(S m, 0) → ack(m, 1)

ack(S m,S n) → ack(m, ack(S m,n))


It is known that we can prove termination of such STTRS using lexicographic
path ordering [24]. Using Proposition 4, we can conclude that t terminates over
any input. Termination can also be proven using the size-change principle [37].

Example 11. Path orderings can also be combined with external techniques to
obtain complexity bounds. For instance, the term len from Example 3 can be
translated into the following STTRS:

R = {f [ ] → 0, f (h :: t) → S (f t)}

Termination of such STTRS can be proven easily using a path ordering.
Furthermore, let us write the following assignment:

||0|| = 0 ||S n|| = ||n||+ 1 ||[ ]|| = 0 ||h :: t|| = ||h||+ ||t||+ 1 ||fx|| = ||x||

This assignment satisfies ||l|| ≥ ||r|| for any l → r ∈ R, and also satisfies the
definition of an additive and polynomial quasi-interpretation [12]. Such defini-
tion, along with a termination condition from a product path ordering, implies
that this STTRS terminates in linear time and uses linear space, i.e. it computes
a function in FPTIME. In particular, as len has a fixed size, it will also terminate
in linear time by our translation result.

Example 12 (Higher-order). We finish this section by giving an example of higher-
order functions. We can write down the standard map function between list in
Hyrql as:

map = letrec f ϕ = λx.matchx
{
[ ] → [ ] , h :: t → (ϕh) :: ((f ϕ)t)

}
Which can then be translated into the following STTRS:

{map(ϕ, [ ]) → [ ], map(ϕ, h :: t) → (ϕh) :: (map(ϕ, t))}

Such STTRS have been proven to terminate with a polynomial time bound
under reasonable assumption for f [8] (i.e. f being given an additive polynomial
interpretation).
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Remark that if one gives a quantum program with an associated quantum
circuit, properties on the circuit can arise from such results. Indeed, termination
of the quantum program implies that the circuit uses a finite number of uni-
tary gates, and is thus finite. Furthermore, the obtained complexity bounds can
translate in bounds on the number of used gates; in particular, time and space
bounds can both relate to the depth and width of the quantum circuit.

5 Conclusion

We presented Hyrql, a hybrid quantum functional language with general re-
cursion. It comes equipped with a type system and call-by-value operational
semantics, and enjoys the standard properties of programming languages. We
also designed an algorithm to translate any term of the language into a seman-
tically equivalent simply-typed term rewrite system, and we proved that the
reduction length for an Hyrql program is the same as the runtime complexity
of its translation up to a polynomial factor.

As discussed during Section 3, our type system is undecidable due to the
orthogonality and unitarity general definition. Orthogonality could be adapted
to feature more decidable cases; for example, in the Quantum Switch defined
in Example 2, both elements in the qcase construct will always be orthogonal
as long as f, g terminate. We could also restrict our language to use a similar
criterion to Spm [45] and obtain a decidable criterion for unitarity.

As we have shown through different examples, our framework is generic as
it is capable of using existing techniques to provide termination and complexity
bounds. Such reasoning could be generalized to specific term subsets that would
ensure space or time complexity bounds. Furthermore, our algorithm is defined
by splitting a program into multiple small subprograms. Assuming we have a
purely quantum program, this gives a way to interpret subprograms as quantum
gates, thus transpiling terms into quantum circuits. Refining existing techniques
for complexity would make it possible to give bounds on depth and width of
such quantum circuits.
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A Additional Material for Section 2

For the sake of simplicity in the following typing trees, we maye denote ;⊢ t : T
for ∅;∅ ⊢ t : T .

Example 13. As |0⟩ , |1⟩ are pure values, then we get |0⟩ ⊥ |1⟩ directly from the
definition. This allows us to type |±⟩:

(ax0)
;⊢ |0⟩ : Qbit

(ax1)
;⊢ |1⟩ : Qbit | 1√

2
|2 + | ± 1√

2
|2 = 1 |0⟩ ⊥ |1⟩

(sup)
;⊢ |±⟩ : Qbit

It is also easy to derive |+⟩ ⊥ |−⟩:

⟨|+⟩ , |−⟩⟩ = 1√
2

1√
2
δ|0⟩,|0⟩ −

1√
2

1√
2
δ|0⟩,|1⟩ +

1√
2

1√
2
δ|1⟩,|0⟩ −

1√
2

1√
2
δ|1⟩,|1⟩

=
1

2
− 1

2
= 0

Using h = λx.qcasex
{
|0⟩ → |+⟩ , |1⟩ → |−⟩

}
for conciseness, we can type

the Hadamard gate as follows:

∅;x : Qbit ⊢ x : Qbit ;⊢ |+⟩ : Qbit ;⊢ |−⟩ : Qbit |+⟩ ⊥ |−⟩
(qcase)

∅;x : Qbit ⊢ qcasex
{
|0⟩ → |+⟩ , |1⟩ → |−⟩

}
: Qbit

(lbd)
;⊢: Qbit⊸ Qbit h is unitary

(unit)
;⊢ Had : Qbit↔ Qbit

The fact that h is unitary is direct from the definition: it is surjective, as for
any v = α · |0⟩+ β · |1⟩, take w = α · |+⟩+ β · |−⟩; the fact that it is an isometry
can be derived easily as |+⟩ ⊥ |−⟩, or by using Proposition 3.

Example 14. The quantum switch from Example 2 can be typed by our language.
For conciseness, we write v = |0⟩ ⊗ f(g t), w = |1⟩ ⊗ g(f t), Γ = f : Qbit ↔
Qbit, g : Qbit ↔ Qbit, s = matchx

{
(c⊗ t)qcase c

{
|0⟩ → v , |1⟩ → w

}}
, ∆ =

c : Qbit, t : Qbit and Q2 = Qbit ⊗ Qbit. Note that v ⊥ w, as f, g terminate as
they are unitary, thus both reducing to a qubit, and orthogonality derives from
the first qubit.

https://doi.org/10.1007/3-540-45127-7_25
https://doi.org/10.1007/3-540-45127-7_25
https://doi.org/10.1007/3-540-45127-7_25
https://doi.org/10.1007/3-540-45127-7_25
https://doi.org/10.1016/C2014-0-02660-3
https://doi.org/10.1016/C2014-0-02660-3
https://doi.org/10.1016/C2014-0-02660-3
https://doi.org/10.1016/C2014-0-02660-3


Resource-Aware Hybrid Quantum Programming 23

Γ ; c : Qbit ⊢ c : Qbit Γ ; t : Qbit ⊢ v : Q2 Γ ; t : Qbit ⊢ w : Q2 v ⊥ w

Γ ;∆ ⊢ qcase c
{
|0⟩ → v , |1⟩ → w

}
: Q2 Γ ;x : Q2 ⊢ x : Q2

Γ ;x : Q2 ⊢ s : Q2

Γ ;x : Q2 ⊢ λx.s : Q2 ⊸ Q2

f : Q2 ↔ Q2;∅ ⊢ λg.λx.s : (Qbit↔ Qbit)⇒ (Q2 ⊸ Q2)

;⊢ QS : (Qbit↔ Qbit)⇒ (Qbit↔ Qbit)⇒ (Q2 ⊸ Q2)

Example 15. Coming back on Example 8, the following typing tree derives typing
for len, for a given type A ∈ BC , with the following notations to shorten the
tree: Γf = f : [A] ⇒ nat, Γx = x : [A], and Γ = Γf , Γx, h : A, t : [A].

Γf , Γx;∅ ⊢ x : [A]

zero :: nat
(cons)

Γf , Γx;∅ ⊢ 0 : nat

S :: nat→ nat

(axc)
Γ ;∅ ⊢ f : [A]⇒ nat

(axc)
Γ ;∅ ⊢ t : [A]

(appc)
Γ ;∅ ⊢ ft : nat

(cons)
Γ ;∅ ⊢ S(ft) : nat

(match)
Γf , Γx;∅ ⊢ matchx

{
[ ]→ 0 , h :: t→ S(ft)

}
: nat

(absc)
Γf ;∅ ⊢ λx.matchx

{
[ ]→ 0 , h :: t→ S(ft)

}
: [A]⇒ nat

(fix)
;⊢ letrec f x = matchx

{
[ ]→ 0 , h :: t→ S(ft)

}
: [A]⇒ nat

In particular, as h is not present in the syntax of S(f t), we could not type
len if h must be used linearly, thus if A ∈ Q.

However, using shape, one can type ;⊢ λy.(y, shape(y)) : Qbit ⊸ [Qbit] ×
nat. Again, to shorten the tree, we use ∆t = t : [Qbit] for any t, pr =
pair[Qbit],nat, and as shape([Qbit]) = [1]:

pr :: [Qbit], nat→ [Qbit]× nat [∆t′ ];∆t ⊢ t : [Qbit]

∅;∆t′ ⊢ t′ : [Qbit]
(shape)

[∆t′ ];∅ ⊢ shape(t′) : [1] [∆t′ ];∅ ⊢ len1 : [1]⇒ nat

(appc)
[∆t];∅ ⊢ len1shape(t

′) : nat
(cons)

[∆t′ ];∆t ⊢ (t, shape(t′)) : [Qbit]× nat

(contr)
∅;∆t ⊢ (t, shape(t)) : [Qbit]× nat

(abs)
;⊢ λt.(t, shape(t)) : [Qbit]⊸ [Qbit]× nat

Example 16. Assuming we have a bit type bit for both constructors 0 :: bit
and 1 :: bit, the typing of Example 4 can be derived, by combining most of
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the techniques exhibited from the previous examples, giving us ;⊢ keygen :
list(bit) ⇒ list(Qbit). Note that when we used programs in the syntax of
other terms, such as Had, it is just notation to avoid rewriting the whole term.

B Proofs of Section 3

B.1 Intermediate results

In this subsection, we state some intermediate results and definitions that we
will use through the main proofs. First, we denote T , Λ, Λ⊢ respectively for the
set of types, terms, and well-typed terms of the language. Furthermore, we may
use the notation {x → v} for a substitution {v/x}, and define the support of
a substitution Supp(σ) as the set of variables xi such that there exists ti with
{ti/xi} ∈ σ.

Lemma 1 (Weakening). Let Γ ;∆ ⊢ t : T be a well-typed term. Then Γ, Γ ′;∆ ⊢
t : T holds for any context Γ ′ compatible with Γ,∆.

Proof. This can be proven by induction on t, as the axiom rules satisfy this
weakening property. Furthermore, the only variable removed from the non-linear
context are bound variables, thus Γ ′ stays untouched at each point. ⊓⊔

Lemma 5. Let T ∈ T . Then, there exists n ∈ N, Ti ∈ T for 1 ≤ i ≤ n, and a
base type B|⟩ such that T = T1↣ . . .↣ Tn↣ B|⟩.

Proof. Direct by induction on T : either it is a base type itself, thus we take
n = 0; or T = T1 ↣ T ′, then we use the induction hypothesis on T ′ and right
associativity to conclude. ⊓⊔

We also introduce an operator θp(t), called the quantity, which aims to mea-
sure the amplitude of a pure term p in a term t, e.g. a superposition.

Definition 6. Let p be a pure term. We define the following map θp : Λ → C as
follows:

θp(x) ≜ δp,x θp(|0⟩) ≜ δp,|0⟩ θp(|1⟩) ≜ δp,|1⟩

θp(qcase t
′ {|0⟩ → t0 , |1⟩ → t1

}
) ≜ δ

p,qcase p′
{
|0⟩ → t0 , |1⟩ → t1

}θp′(t′)

θp(c(t1, . . . , tn)) ≜ δp,c(p1,...,pn) ×n
i=1 θpi

(ti)

θp(match1≤i≤n t
′ {ci(−→xi) → ti}) ≜ δp,match1≤i≤n p′ {ci(−→xi)→ti}θp′(t′)

θp(λx.t) ≜ δp,λx.t θp(letrec f x = t) ≜ δp,letrec f x=t

θp(unit(t)) ≜ δp,unit(t) θp(t1t2) ≜ δp,p1p2νp1,t1νp2,t2

θp(
∑n

i=1 αi · ti) ≜
∑n

i=1 αi · θp(ti) θp(shape(t
′)) ≜ δp,shape(p′)νp′,t′

We have used the notation δp,t for the Kronecker symbol, and νp,t for the equiv-
alence Kronecker symbol, meaning νp,t = 1 iff p ≡ t.



Resource-Aware Hybrid Quantum Programming 25

Lemma 6. Let p be a pure term. Then θp(p) = 1.

Proof. Proven by induction on p, direct by definition of the quantity. ⊓⊔

Lemma 7. Let p be a pure term and t, t′ be two terms of the language. If t ≡ t′,
then θp(t) = θp(t

′).

Proof. By induction on each rule defining ≡ in Table 3; the transitive and reflex-
ive case can be derived from this. The first two lines of rules are verified directly
as C is a vectorial space. The three linearity rules also work by definition of sum-
mation and the linear constructs. Finally, we can prove the C≡ case by doing an
induction on the depth of C≡, the base case being just t ≡ t′ and then obtaining
the result by induction. ⊓⊔

Lemma 8. Let s, t be two pure terms. Then θs(t) = νs,t. Furthemore, if s, t are
values, then θs(t) = δs,t.

Proof. Note by Lemma 6, θs(s) = 1. If θs(t) = 0, then s ̸≡ t, else Lemma 7
would fail. Now, one can check by induction on t that if θs(t) = 1, then s ≡ t.
This is done directly, mainly proving ≡ using C≡. The second part of the lemma
is also obtained directly by induction of t, by looking at the definition of the
quantity. ⊓⊔

Lemma 9. Let t be a term of the language. Suppose t ̸≡ 0 · t′. Then t has a
unique canonical form

∑n
i=1 αi · ti, up to commutativity and equivalence on ti.

Proof. Let us prove existence by induction on t.

– If t = x, |0⟩ , |1⟩ , λx.s, letrec f x = s, unit(s), s1s2 or shape(s), then t is
directly pure and t ≡ 1 · t, which is a canonical form.

– Suppose t = c(t1, . . . , tn). If we have any ti ≡ 0·t′i, then t ≡ 0·c(t1, . . . , t′i, . . . , tn).
Therefore, we can apply the induction hypothesis on each ti, meaning we have
ti ≡

∑ni

ji=1 αji ·tji . By developing t under ≡, we have t ≡
∑n1

j1=1 · · ·
∑nn

jn=1 αj1 . . . αjn ·
c(tj1 , . . . , tjn). This can be seen as one big sum

∑n1...nk

k=1 αk · c(tk1 , . . . , tkn),
where αk = αj1 . . . αjn . In particular, αk ̸= 0 as each αji ̸= 0; and if
c(tk1 , . . . , t

k
n) ≡ c(tk

′

1 , . . . , tk
′

n ), then by Lemma 7, θc(tk1 ,...,tkn)(c(t
k′

1 , . . . , tk
′

n )) =

1 as they are both pure, but by analyzing the formula, this implies θtki (t
k′

i ) =

1, thus by Lemma 7, tki ≡ tk
′

i . By induction hypothesis, this is not possible for
all 1 ≤ i ≤ n, therefore terms are pairwise not equivalent, which concludes.

– The same process can be done for t = qcase t
{
. . .

}
or t = match t

{
. . .

}
, as

they have an identical behaviour to a constructor with one slot.
– Finally, suppose t =

∑n
i=1 αi · ti. Any ti ≡ 0 · t′i will be removed from the

sum through t + 0 · t′ ≡ t, then we can apply the i.h. on the remaining ti.
Finally, using distributivity, we can obtain a big sum

∑n
k=1 βk · sk, where

sk are pure terms. We can group sk that are equivalent, then remove any
potential term with a 0 phase, and the term obtained satisfies the canonical
form definition. Note that as t ̸≡ 0 · t′, the sum obtained is actually well
defined, in particular there is at least one term.
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Unicity comes from our quantity function defined above. Suppose t has two
canonical forms t ≡

∑n
i=1 αi · ti ≡

∑m
j=1 βj · sj . As all ti are pure, for any

1 ≤ i0 ≤ n, θti0 (
∑n

i=1 αi · ti) =
∑n

i=1 αiθti0 (ti). By Lemma 8, θti0 (ti) = νti0 ,ti ,
however the ti are not equivalent pairwise, thus θti0 (

∑n
i=1 αi · ti) = αi0 ̸= 0.

However, by the same argument, θti0 (
∑m

j=1 βj · sj) =
∑m

j=1 βjθti0 (sj). If there
is no sj ≡ ti0 , then Lemma 7 fails, thus there is at least one; and there cannot
be more than one, else, sj ≡ ti0 ≡ sj′ , thus by transitivity sj ≡ sj′ , which
is not possible as this is a canonical form. Therefore, there exists j0 such that
θti0 (

∑m
j=1 βj · sj) = βj0 ; by Lemma 7, we obtain αi0 = βj0 . Thus, any ti has a

unique and distinct (as they are not equivalent) match in sj , therefore n ≤ m.
The same process can be done the other way around, so m ≤ n, thus m = n.
So each sum contains the same number of elements, such that there is a map
from 1, . . . , n to 1, . . . , n that associates i with j such that ti ≡ sj and αi = βj .
Therefore, both sums are equal up to an equivalence on ti and permutation of
the ti. ⊓⊔

Lemma 10. Let t be a well-typed term, suppose that t terminates and has a
canonical form

∑n
i=1 αi · si. Then any element has the same shape, meaning

shape(si)⇝∗ vi, shape(sj)⇝∗ vj, and vi = vj for any i, j.

Proof. By induction on the typing, and the constructed canonical form. Few
points to note:

- for (qcase), as t0 ⊥ t1, in particular they have the same shape, thus any si
will reduce to a superposition of t0, t1;

- for (match), even if the inside argument is the superposition, by induction
hypothesis, all elements have the same shape, thus in particular reduce to the
same ti.

- For (sup), ti ≡ tj , thus they have the same shape. ⊓⊔

Another process that we will do in proofs is completing canonical forms.
Given two terms s, t with canonical forms

∑n
i=1 αi · si and

∑m
j=1 βj · tj , one can

always create the set S, that contains all the si, tj such that they are pairwise
non equivalent. Then, by adding 0 · t′, we can write each canonical form as∑l

k=1 αl · wl and
∑l

k=1 βl · wl. This is not a canonical form as some phases are
zero, but it is equivalent to the first canonical form, thus to s, t; and such shape
is actually close enough to keep most existing results on the canonical form, such
as normalization.

The following lemma abuses the operational semantics, by supposing that we
have a rule allowing to reduce any term

∑n
i=1 0 · ti to

∑n
i=1 0 · t′i when ti ⇝? t′i.

Our type system can easily be expanded to satisfy the properties; in fact, all the
following results, i.e. subject reduction and confluence are proven by taking this
case into account. Furtheremore, we will later prove that any well-typed term
cannot be expressed as so, thus this rule is only necessary for the proofs, and we
have thus chosen to omit it.

Lemma 11. Let t =
∑n

i=1 αi · ti, suppose ti ⇝∗ vi. Then t⇝∗ ∑n
i=1 αi · vi.
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Proof. For each ti such that ti ≡ 0 · s, or such that αi = 0, we can remove it via
(equiv), thus t ≡

∑l
k=1 αk ·tk. By writing each canonical form, up to completion,

as tk ≡
∑m

j=1 βk,j · sj , sj ⇝? s′j and
∑l

k=1 αk · βk,j = γj :

t ≡
m∑
j=1

γj · sj ≡
∑

j,γj ̸=0

γj · sj ⇝
∑

j,γj ̸=0

γj · s′j ≡
m∑
j=1

γj · s′j ≡
n∑

k=1

αk · t′k,

as the sj are pairwise not equivalent, either all γj = 0, or it is a canonical
form. If the obtained form is a value, then we can stop here, and the result will
be correct; even if ti is not a value, the non-value parts will still be canceled
via (Equiv) at the end, as the reduction is deterministic. Else, we can appy
(Can), and we can replace 0 · sj by 0 · s′j . Furthermore, we can add back the
removed terms from the beginning, adding back t′i instead of ti, to get that∑l

k=1 αk · t′k ≡
∑n

i=1 αi · t′i. We conclude by (Equiv), and chaining this multiple
times; such process terminates as the ti do terminate. ⊓⊔

C Proofs of Section 3

C.1 Proofs of confluence

Lemma 12 (Equivalence preservation). Let s1, s2 be two well-typed terms.
Suppose si ⇝ ti for i = 1, 2. Then t1 ≡ t2.

Proof. We prove this result by induction of the sum of the depth of the derivation
trees of si ⇝ ti.

Consider the base case where both derivation trees have the same root. Apart
from (Can) and (Shapes), having the same root implies that s1 = s2, and
as reduction is deterministic, t1 = t2, thus t1 ≡ t2. In the case of (Can), by
Lemma 9, if one has a canonical form, then by ≡ the second also has a canonical
form, which is identical up to commutation and equivalence on the terms. Thus,
s1 =

∑n
j=1 αi · ri, and s2 =

∑n
j=1 βi · qi, where both sums are identical, up

to commutation and each qi is equivalent to a rj . We can apply the induction
hypothesis on qi, rj , to get that the reduced terms are also equivalent, and up to
commuting the terms back, we obtain the equivalence at the end. If not, both
terms have 0 phase, and equivalence is direct from this. The same process can
be applied for (Shapes), but inside the shape construct, by Lemma 10, as it is
a value.

Now, suppose that the trees do not have the same root. First, do not consider
any (Shape) rule. Again, apart from (Can) and (Equiv), all left terms are pure,
and by Lemma 7, no distinct rule can yield two equivalent terms. Suppose the
first tree has a (Equiv) root, meaning:

s1 ≡ q1 q1 ⇝ r1 r1 ≡ t1 (Equiv)
s1 ⇝ t1



28 K. Chardonnet et al.

By transitivity, q1 ≡ s2, thus we can apply the induction hypothesis on
q1 ⇝ r1 and s2 ⇝ t2 to get r1 ≡ t2, and by transitivity, t1 ≡ t2. Same can be
done for the right term.

Now, suppose the first tree has a (Can) root. As the right tree has neither
a (Can) or (Equiv) root, it has a root with a a pure term. This implies that all
phases are not zero, and that s1 is a canonical form. By uniqueness, s1 = 1 · q1,
with q1 ≡ s2, and t1 = 1 · r1. We can apply the induction hypothesis on q1 ⇝ r1,
s2 ⇝ t2, to get t1 ≡ t2 by transitivity of (Equiv). Same can be done for the right
term.

The same process can be done for the (Shape) rules, but inside the shape

construct. ⊓⊔

Theorem 1 (Confluence). Given a well-typed term t if there exist t1 and t2
such that t ⇝∗ t1 and t ⇝∗ t2, then there exist t3 and t4 such that t1 ⇝∗ t3,
t2 ⇝∗ t4 and t3 ≡ t4.

Proof. Let us prove semi-confluence, which implies confluence. Let t ⇝ t1 and
t⇝∗ t2. If t = t2, then result is direct; else t⇝ t3 ⇝∗ t2. If t3 = t2, by the above
result, t1 ≡ t2, which concludes. Else t ⇝ t3 ⇝ t4 ⇝∗ t2. By the above result,
t3 ≡ t1. And as t3 ⇝ t4, then t⇝ t4 by (Equiv). Therefore, t⇝ t1 ⇝ t4 ⇝∗ t2,
and we conclude. ⊓⊔

C.2 Proofs for Subject Reduction

Lemma 13 (Substitution lemma). The two following properties hold:
- If Γ, x : T ′;∆ ⊢ t : T , Γ ;∅ ⊢ t′ : T ′ and σ = {x → t′}, then Γ ;∆ ⊢ σ(t) : T .
- If Γ ;∆,x : T ′ ⊢ t : T , Γ ;∆′ ⊢ t′ : T ′ and σ = {x → t′}, then Γ ;∆,∆′ ⊢

σ(t) : T .

Proof. We prove this by induction on the typing tree of t. For the first property:

– Suppose the root is (ax), meaning Γ, x : T ′; y : T ⊢ y : T , then one can check
that we can also type directly Γ ; y : T ⊢ y : T , and by definition σ(y) = y as
y /∈ Supp(σ), which concludes.

– Suppose the root is (axc), then either t = y with y ̸= x, and the same process
can be done as above. Else, we have σ(t) = σ(x) = t′, which concludes by
the typing of t′.

– If the rules are (ax0) or (ax1), then again σ(t) = t and we can derive the
typing of t with Γ instead of Γ, x : T ′.

– Suppose the root is (qcase), thus t = qcase t′
{
|0⟩ → t0 , |1⟩ → t1

}
. By induc-

tion hypothesis, x is removed from the context of t′, t0, t1, thus we conclude
by typing σ(t) = qcaseσ(t′)

{
|0⟩ → σ(t0) , |1⟩ → σ(t1)

}
.

– Suppose the rule is (cons), meaning Γ, x : T ′;∆i ⊢ ti : Ai; by i.h. Γ ;∆i ⊢
σ(ti) : Ai, and thus we can type Γ ;∆ ⊢ c(σ(t1), . . . , σ(tn)) : B, which
concludes.

– Suppose the rule is (match), the same process can be done as for (qcase), by
remarking that x cannot be a bound variable of a ti, else typing could not
happen.
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– Suppose the root is (abs), thus we have Γ, y : T ′′;∆,x : T ⊢ t : T ′; by i.h.
Γ ;∆,x : T ⊢ σ(t) : T ′, thus by (abs) we can type Γ ;∆ ⊢ λx.σ(t) : T ⊸ T ′,
which concludes as λx.σ(t) = σ(λx.t) as x /∈ Supp(σ).

– The same process can be done for (absc): we have Γ, y : T ′;∆ ⊢ λx.t : C ⇒ T ,
thus we can apply the induction hypothesis to Γ, x : C, y : T ′;∆ ⊢ t : T as
x ̸= y, which gives Γ, x : C;∆ ⊢ σ(t) : T , and we can conclude.

– Suppose the root is (unit), then we have Γ, x : T ′;∅ ⊢ t : T , which by i.h.
gives Γ ;∅ ⊢ σ(t) : T , and concludes as σ(t) is also unitary.

– Suppose the root is (fix), then the same process as for (absc) can be applied.
– Suppose the root is (app), meaning we have Γ, x : B|⟩′′;∆ ⊢ t1 : B|⟩ ⊸ B|⟩′

and Γ, x : B|⟩′′;∆′ ⊢ t2 : B|⟩; by i.h. we have Γ ;∆ ⊢ σ(t1) : B
|⟩ ⊸ B|⟩′ and

Γ ;∆′ ⊢ σ(t2) : B
|⟩, and thus by (app) we can type Γ ;∆ ⊢ σ(t1)σ(t2) : B

|⟩′

which concludes.
– The same can be done for (appc) and (appu).
– Suppose the root is (sup), meaning we have Γ, x : T ′;∆ ⊢ ti : T . By induction

hypothesis, we get Γ ;∆ ⊢ σ(ti) : T , and by definition of ⊥, ti ⊥ tj implies
σ(ti) ⊥ σ(tj), and thus we can type by (sup) Γ ;∆ ⊢

∑n
i=1 αi · σ(ti) : T ,

which concludes by the action of σ on superpositions.
– Suppose the root of the derivation is (shape), first remark that x belongs

in the Γ part, because it has no marker around it; thus we have Γ, x :
T ′;∆ ⊢ t : B|⟩, thus by i.h. Γ ;∆ ⊢ σ(t) : B|⟩, and we can type by (shape)
Γ, [∆];∅ ⊢ shape(σ(t)) : shape(B|⟩), which concludes.

– Suppose the root is (contr), meaning we have Γ, z : T ′, [x : B|⟩];∆, y : B|⟩ ⊢
t : T . Again, as z comes with no marker and thus z ̸= x, which means that
we can treat the case as before, with a non-linear context Γ, [x : B|⟩], and
conclude.

– Suppose the root is (equiv), thus Γ, x : T ′;∆ ⊢ t : T ; by i.h. Γ ;∆ ⊢ σ(t) : T .
One can check that if t ≡ t′, then σ(t) ≡ σ(t′), which concludes.

A similar process can be done to prove the second property. It differs only
by the fact that x is now present in only one subterm context; for the other
subterm, while some x may be present by a shape construct, replacing it with a
well-typed value of same type, one can rewrite the typing tree with the new term
(possibly by remodeling the (contr) rules), and conclude. Else, we have directly
σ(t) = t, thus typing is direct. ⊓⊔

Corollary 1. Let Γ, x1 : T1, . . . , xm : Tm;∆,xm+1 : Tm+1, . . . , xn : Tn ⊢ t : T
be a well-typed term. Then, for any substitution σ such that for all 1 ≤ in,
xi ∈ Supp(σ), Γ ;∆i ⊢ σ(xi) : Ti, we have Γ ;∆,∆1, . . . ,∆n ⊢ σ(t) : T .

Proof. Direct by induction on n: the case n = 1 is simply the above lemma,
and for n = k + 1, any substitution σ can be written as σ = σ′ ◦ τ with τ =
{x1 → σ(x1)}; τ(t) is typable by the above lemma and removes x1 : A1 from the
context, and then σ′(τ(t)) concludes by induction hypothesis. ⊓⊔

Definition 7. Let Γ ;∆ ⊢ t : T be a well-typed term. We say that t types and
terminates, written t.a.t., if t⇝ t1 . . .⇝ tk ⇝ v, Γ ;∆ ⊢ ti : T , Γ ;∆ ⊢ v : T .
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Lemma 14. Let (ti)1≤i≤n be well-typed terms such that ∀i ̸= j, ti ⊥ tj. Let
s =

∑n
i=1 αi · ti, and t =

∑n
i=1 βi · ti such that s, t are t.a.t. and

∑n
i=1 αiβ

∗
i = 0.

Then s ⊥ t.

Proof. As ti ⊥ tj , each ti reduces to a canonical form. Let us write them up to
completion as ti ⇝∗ ∑m

j=1 γij ·vj . By Lemma 11, s⇝∗ ∑m
j=1(

∑n
i=1 αiγij)·vj , and

t⇝∗ ∑m
j=1(

∑n
i=1 βiγij) ·vj . By definition, this is a quasi canonical form, as some

phases may be zero, but vj are two by two distinct; proving the orthogonality
condition on this will imply orthogonality for the exact canonical form. First, it
is easy to see that they all have the same shape, as ti are orthogonal, thus have
the same shape. Compiling the inner product gives the following:

m∑
j=1

m∑
j′=1

(

n∑
i=1

αiγij)(

n∑
i=1

βiγij′)δvj ,v′
j
=

∑
1≤i,i′≤n

αiβ
∗
i

m∑
j=1

γijγ
∗
ij′ =

∑
1≤i,i′≤n

αiβ
∗
i δi,i′ = 0

where the second equality is obtained by developing each sum, and the third
by definition of ti ⊥ tj , and we conclude by the condition on αi, βi. ⊓⊔

Lemma 15. Let (ti)1≤i≤n, (t′i)1≤i≤n such that ∀ij, ti ⊥ t′j. Then for any αi, βi,∑n
i=1 αi · ti ⊥

∑n
i=1 βi · t′i.

Proof. Consider (t̃i)1≤i≤2n where t̃i = ti for 1 ≤ i ≤ n, and t̃i = t′i for n < i ≤ 2n,
and apply Lemma 14. ⊓⊔

Lemma 16. Let Γ ;∆ ⊢ t : T be a pure term. Then we have the following typing
tree:

(r)
Γ0;∆ ⊢ s : T

(contr)
Γ1;∆ ⊢ σ1(s) : T...

(contr)
Γn;∆ ⊢ σn(s) : T

where n ≥ 0, each Γn = Γ , σn(s) = t, r is neither (contr) nor (equiv), and
each Γi, respectively σi, contains one less marked variable, contains one more
mapping, as per (contr).

Proof. Let s be a pure term, and Γ ;∆ ⊢ t : T be any term. We prove by induction
on typing of t that if θs(t) ̸= 0, then s satisfies the property of the lemma.

– (ax): t = x, θs(t) ̸= 0 =⇒ s = x, and we can type s directly.
– (axc), (ax0) and (ax1) are obtained similarly.
– (qcase): t = qcase r

{
|0⟩ → t0 , |1⟩ → t1

}
, θs(t) ̸= 0 =⇒ s = qcase q

{
|0⟩ → t0 , |1⟩ → t1

}
∧

r ≡ q by Lemma 8 as q is pure. We can type q via (equiv) by typing r first,
and then type s via (qcase).

– (cons): t = c(t1, . . . , tn), non-zero quantity implies s = c(s1, . . . , sn) with
si ≡ ti. We can type ti by the typing of t, then si via (equiv), then s via
(cons).



Resource-Aware Hybrid Quantum Programming 31

– (match): same as for (qcase).
– (abs), (absc), (rec), (unit): same as (ax).
– (app): this implies t = t1t2, s = s1s2, with si ≡ ti, thus we type si through

(equiv) and conclude.
– (appc), (appu): same as (app).
– (sup): t =

∑n
i=1 αi · ti, θs(t) =

∑n
i=1 αiθs(ti). As θs(t) ̸= 0, then there is

1 ≤ i ≤ n such that θs(ti) ̸= 0. We can apply the induction hypothesis on
ti, as it has the same context and type as t.

– (shape): t = shape(r), s = shape(q) and q ≡ r, thus we type q through
(equiv) and conclude.

– (equiv): t ≡ t′, θs(t) = θs(t)
′ ̸= 0 through Lemma 7, and we apply i.h. on t′

as it has the same context and type.
– (contr): t = σ(r). We can apply the induction hypothesis on r, then reapply

(contr) on the alternative tree.

Now, we can conclude as by Lemma 6, θs(s) = 1; and any obtained tree
satisfies the hypothesis. ⊓⊔

Lemma 17. Let ∅;x : B|⟩ ⊢ s : B|⟩′, σv = {x → v}, ∅;∅ ⊢ v : B|⟩, ∅;∅ ⊢
v′ : B|⟩ such that v ⊥ v′ and s t.a.t. . We also suppose that any term t that
terminates in less steps than s is also t.a.t. . Then σv(s) ⊥ σv′(s).

Something that we can note is that given s⇝∗ α·|0⟩+β·|1⟩, then qcase s
{
|0⟩ → t0 , |1⟩ → t1

}
will not always reduce to α · t0 + β · t1, as (C≡) requires a pure term, which is
not guaranteed for s. However, we will have qcase s

{
|0⟩ → t0 , |1⟩ → t1

}
⇝∗

α · s0 + β · s1, where ti ⇝∗ si. In particular, proving results of orthogonality
between such terms will guarantee orthogonality between the ti. Same goes for
match.

Proof. By induction on the typing of s:

– (ax) gives the desired result directly;
– (axc), (ax0) and (ax1) have an empty linear context;
– (qcase): s = qcase t

{
|0⟩ → t0 , |1⟩ → t1

}
; as s terminates, so does t, in less

steps than s, thus t reduces to a well-typed value by hypothesis. Therefore,
either ∅;x : B|⟩ ⊢ t : Qbit; the only pure closed values of type Qbit are
|0⟩ and |1⟩, thus σv(t) ⇝∗ α · |0⟩ + β · |1⟩, σv′(t) ⇝∗ γ · |0⟩ + δ · |1⟩, and
by orthogonality αγ∗ + βδ∗ = 0. By definition, σv(s) ⇝∗ α · t0 + β · t1,
σv′(s) ⇝∗ γ · t0 + δ · t1, which are well-typed as s is t.a.t., and we can
conclude by Lemma 14. Else, σv(t) = t, thus t⇝∗ α · |0⟩+ β · |1⟩, σv(s)⇝∗

α · σv(t0) + β · σv(t1). In particular, t0 ⊥ t1, thus σv(ti) ⊥ σv′(t1−i), and
σv(ti) ⊥ σv′(ti) by induction hypothesis, thus we conclude by Lemma 15, as
the obtained summation is t.a.t. as a reduced of s.

– (cons): there is 1 ≤ i ≤ n with ∅;x : B|⟩ ⊢ ti : B|⟩
i. As one coordinate

is orthogonal and the others are identical, orthogonality is verified for the
whole term.
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– (match): same as for (qcase). The only difference is that σ(t) will reduce to
a linear combination of same constructor, thus σv(s) ⇝∗ ∑m

j=1 βj · σwj
(ti),

where wj ⊥ w′
j , and the result is direct by induction hypothesis and by

concluding with Lemma 15.
– (abs), (absc), (rec), (unit) do not yield a term of type B|⟩.
– (app): by typing, reduction of t1t2 implies that t1 reduces too to a well-typed

closed value, i.e.either λx.t, letrec or unit. Furthermore, by typing, either
x is in the context of t1, thus of t, or in the context of t2, thus of v. In any
case, by joining all substitutions, we reach a point where s⇝∗ σ̃(t), and we
can apply the i.h. on t, as it is t.a.t. as a reduced from s.

– Same goes for (appc) and (appu).
– (sup): all ti have the x in the context, thus σv(ti) ⊥ σv′(t′i), and σv(ti) ⊥

σv′(tj) for i ̸= j as ti ⊥ tj , thus we conclude by Lemma 15, as we apply the
lemma on s, which is t.a.t. itself.

– (shape): no linear context.
– (equiv): apply the hypothesis on t, then via (Equiv) we can obtain a reduction

for s.
– (contr): just an alpha-renaming of a classical variable, does not disturb the

previous proofs. ⊓⊔

Lemma 18 (Strong Subject Reduction). Let Γ ;∆ ⊢ t : T be a well-typed
term, such that t terminates in k steps. Then t t.a.t. .

Proof. This is proven by induction on the depth of termination of t. Let us first
prove that t reduces to well-typed terms. If k = 0, the result is direct; suppose
k = k′ + 1, thus t ⇝ t′ ⇝≤k′

v. We will prove that t t.a.t. by induction on the
derivation of ⇝. In most cases, we obtain that t′ is well-typed, which implies
directly that t t.a.t. by induction hypothesis on t′.

First, note that apart from (Can) and (Equiv), left terms are pure, thus
we can apply Lemma 16 to gain a term with no (equiv) rule. Now, let us first
suppose that there is no (contr) rule near the end of the typing tree.

– (Qcase0): the only non (contr) and (equiv) rule typing this syntax is (qcase),
thus ∆ = ∆1, ∆2 with Γ ;∆1 ⊢ |0⟩ : Qbit and Γ ;∆2 ⊢ t0 : Q. Again, as |0⟩
is pure, the only no (contr) and (equiv) rule typing |0⟩ is (ax0). Therefore,
∆1 = ∅, and we can conclude by typing of t0.

– (Qcase1): same as above.
– (Match): the root of typing is (match), thus ∆ = ∆1, ∆2, with Γ ;∆1 ⊢

ci(p
v
1, . . . , p

v
ni
) : B and Γ,−→yi :

−→
Ci;∆2,

−→zi :
−→
Qi ⊢ ti : B

|⟩. Again, by typing as
the vi are pure, this gives us c :: B

|⟩
1 , . . . , B

|⟩
n → B, and Γ ;∆c

i ⊢ pvi : B
|⟩
i ,

with ∆1 = ∆c
1, . . . ,∆

c
ni

. As −→xi =
−→yi ,−→zi , we conclude using Corollary 1.

– (Lbd) : If the root is (app), then ∆ = ∆1, ∆2, Γ ;∆1 ⊢ λx.s : T ′ ⊸ T and
Γ ;∆2 ⊢ v : T ′. Typing of λx.s implies Γ ;∆1, x : T ′ ⊢ s : T ′, and thus by
substitution lemma on σ(s) we conclude. The same process can be done if
the root is (appc).

– (Fix) and (Unit) are identical to (Lbd), up to some small tweaks.
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– (Can) : we consider an alternative typing tree where all equivalence relations
are at the end, as we make them commute with summation, qcase, match
and constructors. Therefore, we have t ≡ s, where s has no (equiv) rule near
the end. If s is pure, then t = 1 · s (by quantity), by i.h. this reduces to
1 · s′ where s′ is well-typed, and using (equiv) we can type 1 · s′. Else, s is
not pure. Let us first prove that given two well-typed closed terms s, t such
that s ⊥ t and that they terminate, reducing to well-typed closed value, then
developing linearly preserves the orthogonality, meaning:

• qcase s
{
|0⟩ → t0 , |1⟩ → t1

}
⊥ qcase t

{
|0⟩ → t0 , |1⟩ → t1

}
: we have s⇝∗

v and t ⇝∗ w (they terminate as we can derive orthogonality). By
definition, v, w are well-typed closed values, thus v ≡ α · |0⟩ + β · |1⟩
and w ≡ γ · |0⟩ + δ · |1⟩. As they are orthogonal, then they will verify
αγ∗ + βδ∗ = 0 (even if this is not the canonical form as some coeffi-
cients can be zero, this will still hold). Now, this indicates, by E, that
qcase s

{
|0⟩ → t0 , |1⟩ → t1

}
⇝∗ α·s0+β·s1 and qcase t

{
|0⟩ → t0 , |1⟩ → t1

}
⇝∗

γ · s0 + δ · s1, where t0 ⇝∗ s0 and t1 ⇝∗ s1. By Lemma 14, as t0 ⊥ t1,
then s0 ⊥ s1, and thus α · s0 + β · s1 ⊥ γ · s0 + δ · s1.

• c(s, . . . , tn) ⊥ c(t, . . . , tn): we suppose that s, t are in first slot, other
cases are done equivalently. By E, when reducing each term to a value,
the first slot will contain the reduced value of s and t. Then, as they
are orthogonal, and the other values are identical, they have the same
shape by Lemma 10, and when writing the summation to test the zero
equality, we can just develop through the first coordinate to obtain back
the summation from the orthogonality of s and t.

• match s
{
. . .

}
⊥ match t

{
. . .

}
: by definition, s⇝∗ ∑n

i=1 αi ·wi and t⇝∗∑n
i=1 βi · wi, by writing their canonical form, and then completing by

some 0 · wi in order to have the same pure elements on each side. As
they are orthogonal, then

∑n
i=1 αiβ

∗
i = 0. Furthermore, they must have

the same shape, and be a value of type B, thus any pure value satisfies
wi = ck(v

1
i , . . . , v

n
i ). As wi ̸= wj for i ̸= j, then one coordinate is distinct.

Now, match s
{
. . .

}
⇝∗ ∑n

i=1 αi · si and match t
{
. . .

}
⇝∗ ∑n

i=1 βi · ti,
where σ(wi)⇝∗ si, and σ(wi)⇝∗ ti. For any i ̸= j, σi and σj have map
one variable to a distinct pure value, as explained above; and any v ̸= w
where v, w are pure values satisfy v ⊥ w. We can thus apply Lemma 17,
and get σi(wi) ⊥ σj(wj). Finally, we can conclude by Lemma 14, and as
si, ti are reduced terms from σi(wi), orthogonality is preserved.

Now, as s is not pure, then there is a subterm of s that contains a (sup)
typing rule, followed by some (maybe 0) linear rules, i.e. (cons), (match)
or (qcase), as they are the only rules which need a pure term inside their
construction to be pure. By definition of C≡, we can develop linearly this sum
to obtain s′ =

∑n
i=1 αi · ti; and by construction, we can use the above result

by induction, as each term is a subterm of a terminating term, thus reduces
in less steps than the original term, therefore we can apply the induction
hypothesis. Note that some terms may obtain a phase 0 at the end, and
could have reduced in more steps; but as they will be removed, not applying
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this process is ok, as we will not test orthogonality with them anyway. as
the base case is (sup) thus requires orthogonal terms. Therefore, by syntax,
s′ is a sum of orthogonal well-typed terms. We can reapply this process on
each ti until they are pure, which terminates as ti has a smaller typing tree
than s, as one (sup) rule has been removed. At the end, we obtain multiple
summation of pure orthogonal values

∑n
i=1 αi · (· · · ·

∑l
k=1 βk · tk). Each sum

can be typed through (sup), as the coefficients come from a (sup) rule and the
above cases show that orthogonality is kept. We can then develop everything,
group equivalent pure terms, and obtain the canonical form back. However,
after reducing each term, we can do the reverse and rewrite the obtained
term as multiple summations. Furthermore, each term has either reduced,
or stayed the same as it was removed; by induction hypothesis on ti ⇝? t′i,
t′i is well-typed with the same context and type as t; and the orthogonality
conditions are still true as we reduce terms, thus we can still type (sup)
for each sum, and therefore type the big sum; as this sum is equivalent to∑n

i=1 αi · t′i, by (equiv), we can type it and conclude.
– (Shape0) : by typing, we have Γ ′;∆′ ⊢ |0⟩ : T ′ where Γ = Γ, [∆′], ∆ = ∅ and

T = shape(T ′). Again, as |0⟩ is pure, then we need to type it with (ax0),
which gives ∆′ = ∅ and T = shape(Qbit) = 1. We conclude as we can type
Γ ;∅ ⊢ () : 1 through (cons).

– (Shape1) : same as above.
– (Shapec) : as the root is (shape), typing gives Γ = Γ ′, [∆′], ∆ = ∅, T = [B]

and Γ ;∆ ⊢ c(v1, . . . , vn) : B. Again by typing, the root being (cons), we have
Γ ;∆i ⊢ vi : B

|⟩
i and ∆ = ∆1, . . . ,∆n. Therefore, (shape) gives Γ, [∆i];∅ ⊢

shape(vi) : shape(B
|⟩
i ); as [∆] = [∆1], . . . , [∆n], the definition of c̃ concludes.

– (Shapes): by Lemma 2, each vi is well-typed with the same type as the
summation, and we conclude as above.

– (Equiv): By (equiv), Γ ;∆ ⊢ t1 : T , by i.h., Γ ;∆ ⊢ t′1 : T , and by (equiv)
again on t1 ≡ t′, we conclude.

– (E): by i.h. on t⇝ t′, Γ ;∆ ⊢ t′ : T , thus one can replace the typing tree of t
by the typing tree of t′, and any rule will still hold. This is in particular true
because E is made of no superpositions nor unitary, so none of these checks
happen and thus typing is preserved.

Now, given a term with some (contr) rules, we may consider the following:

– One can first remark that any (contr) rule commutes with a (qcase), (match),
or any (app) rule. Therefore, for the (Qcase), (Match), (Lbd), (Fix), (Unit)
rules, we can consider an alternative typing tree for t with k ≥ 0 (contr) rules
at the end, and thus have t = σ1 . . . σk(s), where s has no (contr) rule near
the end, thus we can apply the hypothesis above. Also note that if t ⇝ t′,
then t′ = σ1 . . . σk(s

′) and s ⇝ s′. We can then apply the result above on
s⇝ s′, and reapply the k (contr) rules on s′ to obtain the well-typedness of
t′.

– The (Can) rule contains terms that all have the same context, thus any
(contr) rule may actually be applied on each ti before.
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– Any (Shape) rule contains only values, thus no marked variable is actually
given by the context and no (contr) rule is needed.

Therefore, the result still holds for any term. ⊓⊔

Lemma 4 (Subject reduction). Let Γ ;∆ ⊢ t : T be a well-typed term, and
t⇝ t′. If t terminates or t is pure, then Γ ;∆ ⊢ t′ : T .

Proof. If t terminates, then we can apply Lemma 18. If t is pure, one can remark
that the proof in Lemma 18 for pure terms does not require termination, as (Can)
is stopped from going further and needing the termination when t is pure, thus
one can adapt the proof to get the result.

C.3 Proofs for Canonical Forms

Lemma 19. Let t be a term and s be a pure term. Suppose θs(t) ̸= 0. Then t
has a unique canonical form.

Proof. Suppose t ≡ 0·t′. Then θs(t) = θs(0·t′) = 0 by Lemma 7 and by definition
of the quantity; this contradicts the initial hypothesis. We can then conclude by
Lemma 9. ⊓⊔

Lemma 2 (Canonical form for typed terms). Let Γ ;∆ ⊢ t : T be a well-
typed term. Then t has a canonical form

∑n
i=1 αi · ti, and this canonical form is

unique up to reordering and equivalence on the ti. Furthermore, Γ ;∆ ⊢ ti : T .

Proof. Let us first prove that for any well-typed t, there exists a pure term s
such that θs(t) ̸= 0; we then conclude by Lemma 19. By induction on t:

– If t is pure, then take s = t and result is direct;
– If the root is (cons), meaning t = c(t1, . . . , tn), then by induction hypothesis,

as ti is typed, there is a pure term si such that θsi(ti) ̸= 0. We can take
s = c(s1, . . . , sn) and conclude.

– Same is done for (qcase) and (match).
– If the root is (equiv), t ≡ t′, we obtain the result by induction hypothesis on

t′ and conclude by Lemma 7.
– If the root is (contr), then t = σ(t′); we can apply the induction hypothesis

on t′ and take s = σ(s′) which will preserve σ.
– Finally, if the root is (sup), t =

∑n
i=1 αi·ti. By typing, ti is well-typed, thus by

induction hypothesis and Lemma 19, ti has a canonical form. Furthermore,
as ti ⊥ tj , each ti terminates, with ti ⇝∗ ∑ni

j=1 βi,j · wi
j , being canonical

forms. One can complement each canonical form to get ti ⇝∗ ∑m
j=1 βi,jwj ,

where the wj are pure and distinct pairwise. We can thus use Lemma 11,
and get that t ⇝∗ ∑m

j=1(
∑n

i=1 αiβi,j) · wj . If we suppose that t ≡ 0 · t′,
taking t′ = v, by Theorem 1, 0 · v ≡

∑m
j=1(

∑n
i=1 αiβi,j) · wj . By Lemma 7,

θwj (0 · v) = 0 =
∑n

i=1 αiβi,j . One can check that by definition of ti ⊥ tj ,
the rows (βi,1, . . . , βi,n) are orthogonal, thus this would imply that αi = 0,
which contradicts the hypothesis of (sup). Therefore, t ̸≡ 0 · t′, by Lemma 9,
t has a canonical form

∑l
k=1 γk · uk, and take s = u1 to conclude.
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Finally, one can remark that by construction of the canonical form in Lemma 9,
along with an induction on typing, the pure terms obtained are well-typed; such
result is possible as the canonical form is unique, thus the one that we exhibited
will match.

C.4 Proofs of progress

Lemma 20. Let t be a well-typed pure term of type B|⟩, and v be a value. We
suppose that t ≡ v, then t is a value.

Proof. As t is pure, θt(v) = θt(t) = 1. By definition of the quantity, it is easy to
check that θt(v) = 1 implies that t is a value too, thus one can conclude. ⊓⊔

Lemma 21. Let t be a well-typed term of type T1 ↣ T2. Then its canonical
form is 1 · t′.

Proof. Direct by the way canonical forms are generated in Lemma 9, and by
typing of the different constructs. ⊓⊔

Lemma 3 (Progress). Let ∅;∅ ⊢ t : T be a closed term, either t is equivalent
to a value, or t reduces.

Proof. We prove this result by induction on the typing of t. First, let us consider
that t is a pure term.

– The rules (ax), (axc) do not derive a closed term.
– The rules (ax0), (ax1) yield directly a value.
– If the root is (qcase), then t = qcase s

{
|0⟩ → t0 , |1⟩ → t1

}
, with ∅;∅ ⊢ s :

Qbit. Either s ⇝ s′ and t ⇝ qcase s′
{
|0⟩ → t0 , |1⟩ → t1

}
through (E); or

s ≡ v, which by Lemma 20 indicates that s is a pure value, thus s = |i⟩. In
any case, we can reduce through (Qcasei) for i = 0, 1.

– Suppose t is typed with (cons), namely ∅;∅ ⊢ c(t1, . . . , tn) : B. This implies
∅;∅ ⊢ ti : Bi, thus we can apply the induction hypothesis on ti. If each ti ≡
vi, then t ≡ c(v1, . . . , vn) through C≡, which is a value. Else, we take the first
ti, starting from the right, such that ti ⇝ t′i, and then t⇝ c(t1, . . . , t

′
i, . . . , tn)

by (E).
– If the root is (match), then t = match s {c1(−→x1) → t1 , . . . , cn(

−→xn) → tn}, with
∅;∅ ⊢ s : B. Either s ⇝ s′ and t ⇝ match s′

{
. . .

}
through (E); or s ≡ v,

which by Lemma 20 indicates that s is a pure value, thus s = c̄(v1, . . . , vm).
As s is of type B, then c̄ ∈ Cons(B), thus c̄ = ci and t⇝ ti through (Match).

– The rules (abs), (absc), (rec) and (unit) yield directly a value.
– Suppose the root of the derivation is (app), meaning t = t1t2. By typing,

t1, t2 are also closed terms and the induction hypothesis can be applied. If
t2 ⇝ t′2, then t⇝ t1t

′
2 by (E). Else, t2 ≡ v2. If t1 ⇝ t′1, then t1v2 ⇝ t′1v2 by

(E), and as t ≡ t1v2, then t⇝ t′1v2 by (Equiv). Else, t1 ≡ v1. By Lemma 21,
as t1 has a functional type, then its canonical form consists of one pure term;
as v1 has the same canonical form by unicity, this term is a value too. Thus,
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t1 ≡ 1 · v ≡ v. Now, the only closed, well-typed values of type C ⇒ T or
T ⊸ T ′ are either λx.t′, and as (λx.t′)v2 ⇝ σ(t′) via (Lbd), then t⇝ σ(t′)
via (Equiv); or letrec f x = t′ and as (letrec f x = t′)v2 ⇝ σ(t′) via (Fix),
then t⇝ σ(t′) via (Equiv).

– The same proof can be done for (appu), except that the only closed and
well-typed value will be unit(t′) and we will use the reduction rule (Unit)
instead of (Lbd).

– The rule (sup) does not derive a pure term.
– Suppose the root is (shape), meaning t = shape(s), with ∅;∅ ⊢ s : B|⟩.

Note that s is actually closed because its linear and non-linear context are
joined in the non-linear context of t which is empty. Then either s ⇝ s′

and t ⇝ shape(s′) via (E); or s ≡ v. Either v = |i⟩, and t reduces through
(Shapei) and (Equiv); or v = c(v1, . . . , vn) and t reduces through (Shapec)
and (Equiv); or v is a summation, as it is well-typed it has a canonical form
w, and by transitivity t ≡ w, thus t reduces through (Shapes) and (Equiv).
Any other value cannot be typed with a type B|⟩.

– Suppose the root of the derivation is (equiv), namely we have t′ ≡ t. By
hypothesis, t is closed and thus t′ is too. Therefore, either t′ ≡ v and by
transitivity of ≡, t ≡ v; else t′ ⇝ t′′ and then t⇝ t′′ by (Equiv).

– The rule (contr) does not derive a closed term.
– Finally, the rule (contr) cannot yield a closed term.

Now, let t be a well-typed closed term; let us consider its canonical form
t′ =

∑n
i=1 αi · ti. If t′ is a value, then t is equivalent to a value, and we conclude.

Else, any term ti verifies ti ⇝? t′i for a given t′i, by definition, and thus t′ ⇝∑n
i=1 αi · t′i by (Can), and thus t⇝

∑n
i=1 αi · t′i by (Equiv), which concludes. ⊓⊔

C.5 Orthogonality proofs

Theorem 2 (Undecidability of orthogonality). Deciding orthogonality be-
tween two well-typed terms is Π0

2 -complete.

Proof. Let us first prove the Π0
2 -hardness. Let us recall the definition of Pro-

gramming Computable Functions (PCF), which is defined with the following
types and terms grammar:

A,B ::= nat | A → B

t, t1, t2 ::= x | λx.t | t1t2 | fix t | n | succ | pred | ifz t1t2

Each term has a corresponding typing rule, and thus PCF is a typed language.
It is easy to see that our language can encode PCF: any term is already in our
language, apart from pred and ifz, which can be encoded as follows:

pred = λx.matchx
{
0 → 0, S n → n

}
ifz = λx.λy.λn.matchn

{
0 → x, S m → y

}
Therefore, any term of PCF can be encoded into a term in Hyrql through

a total computable function. The Universal Halt problem on PCF is known to
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be Π0
2 -hard. We define UHalt as the set of terms of PCF, thus terms in our

language, terminating over any input, meaning tt1 . . . tn terminates.
Given a well-typed term t from PCF of type T1 ↣ . . . ↣ Tn ↣ B|⟩ (such

type can always be obtained by the Lemma 5), we define

g(t) = (tx1 . . . xn, |0⟩), (tx1 . . . xn, |1⟩),

where x1, . . . , xn are neither free nor bound variables of t. If t ∈ UHalt, then it
terminates over any input. In particular, this implies that tx1 . . . xn terminates
for any substitution, reducing to a value v; and as (v, |0⟩) ⊥ (v, |1⟩), g(t) ∈ ORTHO.
If g(t) ∈ ORTHO, then t must terminate for any substitution of x1, . . . , xn, thus
terminates for any value. Therefore, t ∈ UHalt. Thus, t ∈ UHalt ⇐⇒ g(t) ∈
ORTHO, UHalt ≤ ORTHO, and as UHalt is Π0

2 -hard, it concludes.
The fact that ORTHO ∈ Π0

2 is direct by definition. Given t, t′ be two terms of
the same type with FV(t) = FV(t′) = {x1, . . . , xn}, and let σv1,...,vn = {xi →
vi}1≤i≤n, then orthogonality decision can be written up as:

∀v1, . . . ∀vn, ∃k ∈ N, σv1,...,vn(shape(t))⇝
≤k vs, σv1,...,vn(shape(t

′))⇝≤k v′s

σ(t)⇝∗
n∑

i=1

αi · vi ∈ CAN, σ(t′)⇝∗
m∑
j=1

βj · wj ∈ CAN

vs = v′s ∧
n∑

i=1

m∑
j=1

αiβ
∗
j δvi,wj

= 0

The inside property is decidable: checking if a term reducing in less than k
steps to a variable, written t ⇝≤k v, is decidable; checking the first equality is
decidable as there is no superposition (computed in O(n) with n the size of v),
and the equality to 0 of the double sum and equality is decidable as we have
restricted the scalars in Q̄. Thus the inside property is Π0

0 ; by definition, ORTHO
belongs in Π0

2 , and thus is Π0
2 -complete. ⊓⊔

Proposition 1. Given terms s, t that are well-typed, of finite type, closed, and
terminating, it is decidable whether they are orthogonal. More, if s, t terminate
in polynomial time, then orthogonality can be computed in polynomial time.

Proof. One can check that any value of type T is of size |v| ≤ |T |d, by definition
of the depth, therefore we use n as a bound on the size of any value of such
type. In order to compute and decide ORTHO, we first need to reduce s and t to
values, which is done in f, g steps. Then, computing shape(s) and shape(t) is
done linearly in the size of the value, same for computing equality, thus this is
done in O(n) steps. For the computation of the equality, one needs to compute
the canonical forms for the reduced values of s and t. In particular, we can com-
plement each canonical form, so that testing δvi,wj

is done directly by comparing
the index. This implies checking all terms of the canonical form, and comparing
it with all the other terms, thus checking O(n), comparing it with O(n) terms,
and comparison is done in the worst case in O(n) steps. Then, we compute each
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αiβ
∗
j , and then we have to sum n terms and checking nullity. As we have assumed

to reduce the set of complex phases such that this can be done polynomially,
we assume it is not the operation with the most cost. Such calculus needs to be
done in the worst case n3 times. ⊓⊔

C.6 Proofs for linearity and isometries

Lemma 22. Let Γ ;∆,x : T ⊢ s : B|⟩; suppose that it terminates for any substi-
tution {x → v}. Let v =

∑n
i=1 αi · vi a well-typed value of type T . Let us write

σ = {x → v}, and σi = {x → vi}. Then σ(s) and
∑n

i=1 αi · σi(s) reduce to the
same value.

Proof. By induction on the typing of s. Note that if x is not in the linear context
of a given t, then σ(t) = σi(t); substitution would only work inside a shape

construct, and by definition v and vi will reduce to the same shape.

– (ax) is direct, the other axiom rules do not verify the hypothesis.
– (qcase): s = qcase t

{
|0⟩ → t0 , |1⟩ → t1

}
. By typing, either x is present in

the context of t, thus we can use the linearity of qcase; or it is in t0 and t1,
s⇝∗ α · t̃0 + β · t̃1, where ti ⇝∗ t̃i, and we conclude by i.h. on each ti. Note
that the use of t̃i is required because the left part of the (E) reduction rule
requires a pure term, thus each part may not reduce at the same time.

– (cons): s = c(t1, . . . , tn). By typing, x is present in one ti, thus we can
conclude by linearity of c.

– (match) goes as for (qcase).
– Any (abs) rule does not have a good type.
– Given s = t1t2, in any case we will reach a point where s⇝∗ τ(t′), where t′

is typed by weak subject reduction, and x ∈ Supp(τ), thus we can conclude.
– (sup): s =

∑m
j=1 βj · tj : we can use the induction hypothesis on each tj , use

≡ to permute terms and conclude. ⊓⊔

Proposition 2 (Linear functional terms). Let ∅;∅ ⊢ t : T1⊸ T2 such that
t w terminates for any input ∅;∅ ⊢ w : T1. For any ∅;∅ ⊢

∑n
i=1 αi · vi : T1,

there exist t1, t2 such that t (
∑n

i=1 αi · vi) ⇝∗ t1 and
∑n

i=1 αi · t vi ⇝∗ t2, and
t1 ≡ t2.

Proof. Direct by Lemma 22. ⊓⊔

Lemma 23. The following hold for s, t, si being well-typed closed terminating
terms:

– If s ⊥ t, then ⟨s, t⟩ = 0.
– ⟨s, t⟩ = ⟨t, s⟩;
– ⟨

∑n
i=1 αi · si, t⟩ =

∑n
i=1 αi · ⟨si, t⟩;

– ⟨s, s⟩ = 1.
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Proof. The first two properties are direct by definition of the inner product.
The third property can also be obtained directly from Lemma 11: given si ⇝∗∑m

j=1 βij · wj , t⇝∗ ∑l
k=1 γk · uk:

⟨
n∑

i=1

αi·si, t⟩ =
∑

1≤j≤m
1≤k≤l

(

n∑
i=1

αiβij)γ
∗
kδwj ,uk

=

n∑
i=1

αi·
∑

1≤j≤m
1≤k≤l

βijγ
∗
kδwj ,uk

=

n∑
i=1

αi⟨si, t⟩

Finally, the last result can be obtained by induction on the length of termina-
tion, by case analysis on the root of the typing tree of s. Among the interesting
cases:

– For (qcase), by induction hypothesis, t⇝∗ α·|0⟩+β ·|1⟩, with |α|2+|β|2 = 1.
We will get s⇝ α · s0 + β · s1, where ti ⇝∗ si, thus they are orthogonal; we
conclude by induction hypothesis on the si, and by the three first properties.

– For (match), t⇝∗ ∑n
i=1 αi · vi, where the vi are orthogonal as they are dis-

tinct; by Lemma 17, σi(tj) will be pairwise orthogonal, thus we can conclude
as for (qcase).

– For (sup), let ti ⇝∗ ∑m
j=1 βij · vj . Then, by Lemma 11 :

⟨s, s⟩ =
m∑
j=1

(

n∑
i=1

αiβij)(

n∑
i′=1

αi′βi′j)
∗δvj ,v′

j

=
∑

1≤i,i′≤n

αiα
∗
i

m∑
j=1

βijβi′j =
∑

1≤i,i′≤n

αiα
∗
i δi,i′ = 1

where the last inequality is a consequence of ti ⊥ ti′ for i ̸= i′, and the
induction hypothesis for i = i′ (as by Lemma 18, the reduced of ti is well-
typed).

– For (equiv), if s ≡ t, and t ⇝∗ v, then so does s (up to equivalence), thus
we can conclude. ⊓⊔

Proposition 3 (Quantum linear terms are isometries). Let Γ ;∆ ⊢ t :
Q1⊸ Q2; if it terminates for any input, then t is an isometry.

Proof. Let v, w be well-typed closed values, and let their canonical form, up to
completion

∑n
i=1 αi · vi and

∑n
i=1 βi ·wi. By Proposition 2, σ(t)v reduces to the

same value as
∑n

i=1 αi · σ(v), same for σ(t)w, therefore:

⟨σ(t)v, σ(t)w⟩ = ⟨
n∑

i=1

αi · σ(t)vi,
n∑

i=1

βi · σ(t)wi⟩ =
∑

1≤i,i′≤n

αiβ
∗
i ⟨σ(t)vi, σ(t)v′i⟩

=
∑

1≤i,i′≤n

αiβ
∗
i δi,i′ = ⟨v, w⟩

where, the first equality comes from confluence, the second from linearity of
the inner product, and the third by the fact that each term is of norm 1 for
i = i′, and when i ̸= i′, vi ⊥ v′i as they are pure, and we can use Lemma 17 and
Lemma 23 to conclude. ⊓⊔
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D A translation algorithm from Hyrql to STTRS

Before providing our algorithm, we define formally the reduction of a STTRS,
by introducing ane equivalence relation, similarly to Hyrql. equivalence rela-
tion, similarly to Hyrql. This equivalence relation ≡R is defined by the rules in
Table 7, where F̃ = F \ {shape, unit}.

t1 + t2 ≡R t2 + t1 t1 + (t2 + t3) ≡R (t1 + t2) + t3 1 · t ≡R t t+ 0 · t′ ≡R t

α · (β · t) ≡R αβ · t α · (t1 + t2) ≡R α · t1 + α · t2 α · t+ β · t ≡R (α+ β) · t

t(
−→
t1,

∑n
i=1 αi · si,−→t2) ≡R

∑n
i=1 αi · t(−→t1, si,−→t2), t ∈ F̃

Table 7. Equivalence relation on terms of a STTRS

This allows us to define how terms of a STTRS reduce.

Definition 8 (Rewrite relation). We define the TRS-context as a term with
one hole, namely given by the following grammar:

C ::= ⋄ | t(−→t , C,−→v ) | C(−→v )

In this language, we restrict substitutions to maps from variables to patterns.
We write s →R t, if the following conditions are respected:

– s ≡R
∑n

i=1 αi · si and t ≡R
∑n

i=1 αi · ti, where αi ̸= 0 and si are pure
terms;

– For any 1 ≤ i ≤ n, either si = ti = v, or si = Ci[σili] and ti = Ci[σiri] with
li → ri ∈ R.

– There is at least one si that is not a value.

We now provide below an algorithm to convert any term of the language
into a STTRS. While we could provide an algorithm that converts any term,
reduction in both worlds will not yield a semantically equal term. Therefore, we
first provide a syntactic restriction to our language.

Definition 9 (Admissible term). We define the admissible syntax by the fol-
lowing grammars:

ta ::= x | |0⟩ | |1⟩ | c(ta1 , . . . , tan) |
n∑

i=1

αi · tai | shape(ta) | tf

tf ::= x | (λx.ts)c | (letrec f x = ts)c | unit(ta) | tf ta

ts ::= ta | qcasex
{
|0⟩ → ts0 , |1⟩ → ts1

}
| matchx {c1(−→x1) → t1 , . . . , cn(

−→xn) → tn} | λx.ts
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The notation (t)c states that FV(t) = ∅. Finally, we say that t is an admis-
sible term, if it is well-typed, closed, its syntax is given by the grammar of ta,
and no variable x appears in more than one pattern-matching construct.

The key points of this restriction are the following:

– Any pattern-matching construct is applied only to a variable.
– Higher-orders is restricted to variables, closed values, or applications. Fur-

thermore, any recursive construct is the last abstraction before obtaining a
closed term. Such restriction allows to easily transform the higher order term
into a function symbol.

Such restriction allows to decompose the reduction in multiple steps, by in-
troducing multiple function symbols, and will be necessary later to obtain a
semantic equivalence between both worlds. Furthermore, this does not discard
any program which could be written in Hyrql, as shown below:

Proposition 5 (Admissible transformation). Let ∅;∅ ⊢ t : T be a well-
typed terminating term of size |t| = n. Suppose T = T1↣ . . .↣ Tn↣ B|⟩. Then
there exists an admissible term s such that for any ∅;∅ ⊢ vi : Ti, tv1 . . . vn ⇝≤k

v, sv1 . . . vn ⇝≤l v, and l = O(kn2). Furthermore, this transformation is done
in O(n2) steps.

Proof. First, let us show that given Γ ;∆ ⊢ t : T , we have Γ ;∆ ⊢ s : T , with no
variable x happening in two pattern-matching constructs, and s satisfying the ad-
missible grammar, such that for any substitution σ, σ(t)v1 . . . vn and σ(s)v1 . . . vn
are joinable.

By induction on the syntax of t:

– x, |0⟩ , |1⟩ already satisfies the conditions.
– t = qcase t′

{
|0⟩ → t0 , |1⟩ → t1

}
. We can apply the induction on t′, t0, and

t1 to get s′, s0, s1. Let x be a variable that is not already used. Taking
x1, . . . , xn = FV(s′) ∪ FV(s0) ∪ FV(s1), let us write
s = (λx.λx1. . . . λxn.qcasex

{
|0⟩ → s0 , |1⟩ → s1

}
)s′x1 . . . xn. One can check

that as s′, s0, s1 are well-typed by induction hypothesis, then so is s, with the
good type and context. Furthermore, s is derived from the grammar of ta. By
hypothesis, we also have s′ ⇝∗ v and t′ ⇝∗ v, t⇝∗ qcase v

{
|0⟩ → t0 , |1⟩ → t1

}
,

and s⇝∗ qcase v
{
|0⟩ → s0 , |1⟩ → s1

}
; we can conclude, as si, ti terminate

and are joinable.
– t = c(t1, . . . , tn): by induction on each ti, we have si with the same context

such that they are joinable. Thus, one can write s = c(s1, . . . , sn), which
is well-typed with the corresponding type and context, is derived from the
admissible grammar, and as T = B, by C≡, any si terminates, thus s ⇝∗

c(v1, . . . , vn) and t ⇝∗ c(v1, . . . , vn), which concludes. By definition, as si
satisfies the admissible syntax, any variable in a pattern-matching construct
is captured, thus we can also satisfy this condition via α-renaming.

– t = match t′
{
. . .

}
: we can do the same process as for qcase.
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– t = λx.t′: by induction on t′, we have s′ such that they are joinable; let s =
λx.s′. Suppose T = T1↣ . . .↣ Tn↣ B|⟩. Then, sv1 . . . vn ⇝ σ(s′)v2 . . . vn,
and tv1 . . . vn ⇝ σ(t′)v2 . . . vn.

Now, when t is closed, then s is closed too, thus s is an admissible term. Note
that the translation goes linearly through the term, and adds O(n) abstractions,
in the worst case, to fit the syntax. Therefore, the translation has a cost of O(n2).
The same process goes for the bound on the terminations: for each step, we add
at most O(n) abstractions, therefore the scaling of the reduction is O(kn2). As
t terminates, then so does s, and joinable implies that they reduce to the same
value; and as t is closed, σ(t) = t and σ(s) = s, and we recover the shape of the
theorem. ⊓⊔

Note that this proof is constructive. The construction will be used in Algo-
rithm 3.

We now present an algorithm that aims to translate any admissible term
into a term-rewriting system. The main part of the algorithm is defined in Al-
gorithm 1, that builds the STTRS inductively on the syntax of the term. This
algorithm applied to a term s returns three sets C,R, S which are called the
partial rules of s, where:

– C contains the current rules, i.e. rules of the shape l → r, σ, indicating that
under a substitution σ, s has a rewrite rule l → r;

– R contains the rewrite rules that are already well-formed, in particular
rewrite rules for function symbols that were introduced when parsing s;

– S is a set {t → f} indicating the function symbols f introduced as well as
the original term t in the base language.

Intuitively, each rule will correspond to a specific choice of branches in the
pattern-matching constructs. The entry point of this algorithm is done in Algo-
rithm 2, which takes an admissible term and will call Algorithm 1 from it. This
algorithm only returns all the needed rewrite rules R and the set of introduced
symbols S.

We also introduce in Table 8 an interpretation, that maps any term t of the
language to a term M = ⟨t⟩S of the produced STTRS. Note that this depends
on the set of function symbols, as we need it to interprete any term t in S as its
corresponding function symbol. We also introduce an interpreation ⟨−⟩T of the
type of Hyrql to the types of a STTRS. Given two substitutions σ, δ, we denote
σ ◦ δ as the ordered composition of substitutions, meaning (σ ◦ δ)(t) = σ(δ(t)) .

We now give the properties that our translation verifies. First, as the system
is build inductively on the syntax, such computation is done in polynomial time.

Proposition 6 (Translation complexity). Let t be an admissible term of size
k. Then the computation TranslateAdmissible(t) is done in O(k2) steps.

Furthemore, our algorithm also produces well-defined systems for admissible
terms.
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Algorithm 1: Main translation algorithm
Function Translate(s):

Data: An admissible subterm s
Result: The partial rewrite rules for s
switch s do

when x or |0⟩ or |1⟩: return {⊥ → s, ϵ}, ∅, ∅
when qcasex

{
|0⟩ → t0 , |1⟩ → t1

}
: begin

Ci, Ri, Si ←− Translate(ti), i = 0, 1
for i in {0, 1}, (l→ r, σ) in Ci do

σx ←− {x→ |i⟩} and σ ←− σ ◦ σx and r ←− σx(r)
return C0 ∪ C1, R0 ∪R1, S0 ∪ S1

when c(t1, . . . , tn): begin
Ci, Ri, Si ←− Translate(ti), 1 ≤ i ≤ n
assert Ci = {⊥→ ri, ϵ}, 1 ≤ i ≤ n
return {⊥→ c(r1, . . . , rn), ϵ},∪n

i=1Ri,∪n
i=1Si

when matchx {c1(−→x1)→ t1 , . . . , cn(
−→xn)→ tn} : begin

Ci, Ri, Si ←− Translate(ti), 1 ≤ i ≤ n
C ←− ∅
for i in {1, . . . , n}, (l→ r, σ) in Ci do

assert σ = σb ◦ σx = σx ◦ σb and σ(c(−→xi)) = σx(c(
−→xi)) = v

σc ←− {x→ v}
C ←− C ∪ {l→ σc(r), σb ◦ σc}

return C′,∪n
i=1Ri,∪n

i=1Si

when λx.t or letrec f x = t: begin
C,R, S ←− Translate(t)
foreach (l→ r, σ) ∈ C do l←− σ(x)l
if FV(t) = ∅ then

f = FctSymbol()
if t = letrec f x = t then τ ←− {f → f} else τ ←− ϵ
R←− R ∪ {f l→ τ(r) | (l→ r, σ) ∈ C}
C ←− {⊥ → f, ϵ} and S ←− S ∪ {s→ f}

return C,R, S
when unit(t): begin

C,R, S ←− Translate(t)
if t→ f ∈ S then

S ←− S ∪ {s→ f} \ {t→ f}
r ←− σ(r) for σ = {f→ unit(f)}

else
foreach (l→ r, σ) ∈ C do r ←− unit(r)

return C,R, S
when t1t2: begin

Ci, Ri, Si ←− Translate(ti), i = 1, 2
assert Ci = {⊥ → ri, ϵ}, i = 1, 2
return {⊥ → r1r2, ϵ}, R1 ∪R2, S1 ∪ S2

when
∑n

i=1 αi · ti: begin
Ci, Ri, Si ←− Translate(ti), 1 ≤ i ≤ n
assert Ci = {⊥→ ri, ϵ}, 1 ≤ i ≤ n
return {⊥→

∑n
i=1 αi · ri, ϵ},∪n

i=1Ri,∪n
i=1Si

when shape(t): begin
C,R, S ←− Translate(t)
foreach l→ r, σ ∈ C do r ←− shape(r)
return C,R, S
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⟨x⟩S = x ⟨c(t1, . . . , tn)⟩S = c⟨t1⟩S . . . ⟨tn⟩S ⟨
∑n

i=1 αi · ti⟩S =
∑n

i=1 αi · ⟨ti⟩S

⟨t1t2⟩S = ⟨t1⟩S⟨t2⟩S ⟨t⟩S = f if t→ f ∈ S

⟨shape(t)⟩S = shape⟨t⟩S ⟨unit(t)⟩S = unit⟨t⟩S

⟨B|⟩⟩T = B|⟩ ⟨T ↣ T ′⟩T = ⟨T ⟩T → ⟨T ′⟩T

Table 8. Interpretation from a term of the language into a term of a STTRS, with a
set of terms interpretations S

Algorithm 2: Translation algorithm of admissible terms
Function TranslateAdmissible(s):

Data: An admissible term s
Result: The rewrites rules for s and all the interpretations of the

introduced function symbols
C,R, S ←− Translate(s)
assert C = {⊥ → r, ϵ}
if r = st then f←− FctSymbol(), R←− R∪{f→ r}, S ←− S ∪{t→ f}
R←− R ∪ {unitx y → x y}
R←− R ∪ {shape |0⟩ → (), shape |1⟩ → ()}
R←− R ∪ {shape(α · |0⟩+ β · |1⟩)→ ()}
R←− R ∪ {shape(c(x1, . . . , xn))→ c̃(shape(x1), . . . , shape(xn)) | B ∈
B, c ∈ Cons(B)}

return R,S

Theorem 3 (Well-definedness). Let s be an admissible term, and R,S =
TranslateAdmissible(s). Then R is a well-defined STTRS.

Lemma 24. Let s be an admissible subterm of type B|⟩, and C,R, S = Translate(s).
Then for any (l → r, σ) ∈ C, l =⊥.

Proof. Direct by induction on s. ⊓⊔

Definition 10. Let σ be a substitution. We say that σ is a pattern substitution
if for any x ∈ Supp(σ), σ(x) is a pattern. Given two pattern substitutions σ, σ′,

Algorithm 3: Translation algorithm for any term
Function TranslateEntry(t):

Data: A term t
Result: The rewrites rules for s and all the interpretations of the

introduced function symbols
s←− Use proof of Proposition 5 on t
R, S ←− TranslateAdmissible(s)
return R,S
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with Supp(σ) ∪ Supp(σ′) = x1, . . . , xn, we say that they are non-overlapping if
σ(x1) . . . σ(xn) and σ′(x1) . . . σ

′(xn) cannot overlap.

Lemma 25. Let s be an admissible subterm of type T , and C,R, S = Translate(s).
Then one of the two following is true:

(P1) ∀(l → r, σ) ∈ C, l =⊥, and r is of type ⟨T ⟩T ;
(P2) ∃k ≥ 1, T1, . . . , Tk, T

′, ∀(l → r, σ) ∈ C, l = p1 . . . pk, where pi is pattern of
type ⟨Ti⟩T , r is of type ⟨T ′⟩T , every variable happens at most once in l, and
T = T1↣ . . .↣ Tk ↣ T ′;

Furthermore, the set {σ | (l → r, σ) ∈ C} is a set of pattern substitutions
that are two by two non-overlapping.

Proof. This can be proven directly by induction on s:

– s = x, |0⟩ , |1⟩ is direct.
– s = qcasex

{
|0⟩ → t0 , |1⟩ → t1

}
: by typing, s is of type Q, thus B|⟩. There-

fore, by Lemma 24, any left part of a rule in C0 ∪ C1 is ⊥, and (P1) is
verified. If σ is a pattern substitution, then so is σ ◦ {x → |i⟩}; and given
two substitutions, either they come from a different Ci thus σ(x) will prevent
any overlap; or they come from the same, and thus we conclude by induction
hypothesis.

– s = c(t1, . . . , tn): by induction hypothesis, as each ti is of type B|⟩, any ri
has the same type as ti, thus c(σ(r1), . . . , σ(rn)) has the same type as s, and
any left term is ⊥, thus (P1) is verified.

– s = matchx {c1(−→x1) → t1 , . . . , cn(
−→xn) → tn}: by typing, as ti is of type B|⟩,

any rule in Ci has a left term l =⊥. Furthermore, one can check that σc(r)
has the same type as r, and as s has the same type as each ti, (P1) is verified.
The fact that the two substitutions are non-overlapping either comes from
the fact that the σb are non-overlapping, or if the σx are non-overlapping,
as they are in the construction of σc, the result will still hold.

– s = λx.t, letrec f x = t: by definition, σ(x) is a pattern. Therefore, either
(P1) was verified for t, and then l = σ(x), or (P2) was verified and then
σ(x)p1 . . . pk still satisfies (P2). The typing condition is direct as s has type
T1 ↣ T2. Substitutions are untouched thus the result is still good. If we
enter the if condition, then {⊥ → f, ϵ} satisfies directly the conditions.

– s = unit(t): by syntax, t is either a variable or a closed function, thus the
rules of t are such that l = ⊥, thus we can conclude.

– s = t1t2,
∑n

i=1 αi · ti is proven in the same fashion as c(t1, . . . , tn).
– s = shape(t): as t is of type B|⟩, left part of a rule is ⊥, thus we can conclude.

Proof (Proof of Theorem 3). Proving this lemma means that the STTRS ob-
tained by the algorithm satisfies Definition 5. Let us prove them one by one.
Note that orthogonality of rules is equivalent to non-overlapping and left-linear
rules, which is what is proven here.

Given any rule l → r ∈ R, it comes from two spots. Either it was created
in the call of Translate(t), therefore t = λx.s (same reasoning can be done if
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t = letrec f x = s). Now, this implies that l = fl′ and that (l′ → r, σ) ∈ C
satisfied the property (P2) from Lemma 25. This first gives us that l = fp1 . . . pk,
which is the wanted shape. Furthermore, as f is of the same type as t, we can
use the typing results of (P2) to conclude that l, r have the same type. Any
variable also happens at most once in l by (P2). Furthermore, one can check
that FV(l) ⊇ FV(r). Indeed, suppose there is x ∈ FV(r) and x ̸∈ FV(l). By
definition of the algorithm, if x cannot by captured by a match construct, else
it would have been susbtituted and would no more be in r. If it is captured in
λx.s′ or letrec f x = s′, then we would have x ∈ FV(l). Therefore, the only
possibility is if x ∈ FV(t), which cannot be true as t is closed.

The other possibility is if the rewrite rule was created in TranslateAdmissible(t).
The rewrite rules for shape and unit satisfy directly the hypothesis; and if the
rule is f → r, with ⊥→ r ∈ C, it satisfies (P1), and thus the result is obtained
directly.

The non-overlapping property also comes from Lemma 25, as any symbol
f is associated with a unique term, thus generated for all rules satisfying this
property. Each symbol also has the same arity, again by the same lemma. ⊓⊔

Finally, we prove that the runtime-complexity between Hyrql and our STTRS
is related. To do so, we first prove the following lemma, stating that one rewrite
rule preserves the semantics. The fact that we need to use another set than S is
explained in Remark 3.

Lemma 26 (Single rewrite rule semantics). Let R,S = TranslateAdmissible(s)
for a given admissible term s. Let l → r ∈ R. Then, for any well-typed closed
term t, any substitution σ and any set S ′, such that ⟨t⟩S′ = σl, t⇝≤|s| t′ where
⟨t⟩S′ = σr.

Remark 2. Note that Lemma 26 is only defined for a rewrite rule, and not for
any reduction →R. This is because of our reduction strategy: superpositions
are reduced in parallel, and each term is not guaranteed to reduce in the same
time. Given s = (λx.x), and s → id ∈ S, one can write t = 1√

2
· (s |0⟩ , s |0⟩) +

1√
2
· (s(s |0⟩), |1⟩); and while any term of the superposition satisfies Lemma 26,

t does not satisfy it. However, semantics is preserved at the end; and this does
not disturb the length of reduction, as when all terms reach the end of their
reduction, it is the case for the main term.

Lemma 27. Let C,R, S = Translate(t) for a well-typed term t. Suppose that
t = ta is given by the admissible grammar. Then C = {⊥ → r, ϵ} with ⟨t⟩S = r.

Proof. By induction on the syntax of t, by considering all the possible cases in
both grammar.

– t = x: C = {⊥ → x, ϵ}, thus the result is direct. Same goes for |0⟩ and |1⟩.
– t = c(ta1 , . . . , t

a
n): by induction hypothesis on tai , there is only one rule, thus

C = {⊥ → c(r1, . . . , rn), ϵ}; and ⟨t⟩S = c(⟨t1⟩S , . . . , ⟨tn⟩S) = c(r1, . . . , rn) =
r.
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– t = (λx.ts)c: as t is closed, then C = {⊥ → f, ϵ}, thus we conclude. Same
goes for t = (letrec f x = ts)c.

– t = unit(ta): by induction, ta has one rule, and ⟨t⟩S = unit(⟨ta⟩S), which
concludes.

– t = tf ta: direct by concatenation of both rules.
– t =

∑n
i=1 αi · tai : same as for c(t1, . . . , tn).

– t = shape(ta): same as for unit(t).
– t = tf : direct by induction hypothesis. ⊓⊔

Lemma 28. Let C,R, S = Translate(s) where s is a well-typed term of size
k. Then for any l → r, σ ∈ C, and for any substitution δ:

(R1) Either l =⊥, and δ(σ(s))⇝≤k r′ where ⟨r′⟩S = δ(r);
(R2) or l = p1 . . . pk, and δ(σ(s)p1 . . . pk)⇝≤k r′ where ⟨r′⟩S = δ(r).

Proof. By induction on s. Note that any admissible term satisfies directly (R1)
by Lemma 27, therefore we only discuss the other cases.

– Suppose s = qcasex
{
|0⟩ → t0 , |1⟩ → t1

}
. Let l → r, σ ∈ C. By defini-

tion of the algorithm, σ = σ′ ◦ σx, with σx = {x → |i⟩}, r = σx(r
′) and

l → r′, σ′ ∈ Ci. Furthermore, by Lemma 24, l =⊥. Therefore, given any δ,
δ(σ(s)) = qcase |i⟩

{
|0⟩ → δ(σ(t0)) , |1⟩ → δ(σ(t1))

}
⇝ δ(σ(ti)). Then, by

commutation, δ(σ(t)) = δ(σx(σ
′(t))) ⇝≤|t| δ(σx(r

′)) = δ(r). By definition,
|s| ≥ |ti|+ 1, thus δ(σ(s))⇝≤|s| δ(r), which concludes.

– Suppose s = match t
{
. . .

}
; by syntax, t = x. Now, any rule in C is of the

shape (l → σx(r), σb ◦ σc), where l → r, σ ∈ Ci for a given i. Let any
substitution δ, and let σ′ = σb ◦ σc.

δ(σ′(s)) = match ci(δ(σx(x
1
i )), . . . , δ(σx(x

ni
i )))

{
ci(

−→xi) → δ(σ′(ti))
}
⇝ τ(δ(σ′(ti))),

with τ = {xj
i → δ(σx(x

j
i ))}. One can check that τ ◦ δ = δ ◦σx, and σx ◦σ′ =

σc ◦ σ by commuting the substitutions. This implies that τ(δ(σ′(ti))) =
δ(σc(σ(t)))⇝≤|ti| δ(σc(r)), which is the expected result. Furthermore, |s| ≥
|ti|+ 1, thus δ(σ′(s))⇝≤|s| δ(σx(r)), which concludes.

– Suppose s = λx.t. If s has no free variables, then the result is direct as C =
{⊥ → f, ϵ}. Else, for any obtained rule, we have l = σ(x)l′ with l′ → r, σ a
rule of t. Therefore, σ(s)σ(x)l′ = λx.σ(t)σ(x)l′ ⇝ δ(σ(t))l′ = σ(t)l′ ⇝≤|t| r;
where δ = {x → σ(x)} that actually satisfies δ ◦ σ = σ. As |s| = |t|+1, then
the bound on reduction is satisfied. The same can be done for letrec f x = t.

⊓⊔

Proof (Proof of Lemma 26). Let l → r ∈ R; such rule can come from two places.
Either t = λx.s, letrec f x = s, thus it comes from Algorithm 1. In this case,
l = fl′, where l′ → r, σ satisfies (R2) from Lemma 28. As t is closed, σ(t) = t,
thus the result is direct. Else, the rule has been made in Algorithm 2. Either it
is a shapeor unitrule, which gives directly the result by definition; or l = f, and
⊥→ r ∈ C, with C coming from Translate(t). By definition, (R1) is verified,
therefore we also obtain the result directly, as t is closed. ⊓⊔
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We can now prove the main theorem.

Theorem 4 (Reduction complexity relation). Let ∅;∅ ⊢ si : Ti be ad-
missible terms for 1 ≤ i ≤ n. Let Ri,Si = TranslateAdmissible(si). Let
R = ∪1≤i≤nRi, S = ∪1≤i≤nSi, and m = max1≤i≤n |si|. Let t be a closed term of
type B|⟩, and let L = ⟨t⟩S . If L reduces to a value M in k steps, then t⇝≤mk v,
and ⟨v⟩S = M .

Lemma 29. Let ∅;∅ ⊢ sv1 . . . vn : T be an admissible term. Suppose that vk =∑n
j=1 γj · wj. Then, sv1 . . . vn and

∑n
j=1 γj · sv1 . . . wj . . . vn are joinable.

Proof. This is proven by induction on the syntax of s. The admissible syntax
imposes that s = λx1. . . . λxn.s

′ (or letrec, but this has the same behaviour);
and as we can type vk, then Tk = Qk. Therefore, xk is used once in s′. and
by construction, either xk is used in a pattern-matching construct, on which we
have linearity, either in a constructor, on which we also have linearity, or in an
application, on which we can use the induction hypothesis to conclude. ⊓⊔

Proof (Proof of Theorem 4). We prove this by induction on k. The case k = 0
being direct, suppose k = k′ + 1, therefore L →R N , and N reduces to M in k′

steps.
First, suppose that L is pure. This implies that we have a context C, a substi-

tution σ and a rule l → r ∈ R such that L = C(σl) and N = C(σr). The fact that
L = ⟨t⟩S implies that t = C(s) with ⟨s⟩S = σl. As l → r comes from one Ri, we
can apply Lemma 26 and get that s ⇝≤|si| s′ where ⟨s′⟩S = σr. Furthermore,
one can remark that as L is pure, so is s, and so will be any element of the chain
of reduction from s to s′. As any C can be written as a E, and |si| ≤ m, we can
chain m (E) reductions, to get that t⇝≤m C(s′); and ⟨C(s′)⟩S = N . We can then
use the induction hypothesis on N,L, and conclude that t⇝≤m C(s′)⇝≤k′m v,
thus t⇝≤km v with ⟨v⟩S = M .

Now, let L be a general term, that may not be pure. Let us first express
it as L ≡R

∑n
i=1 αi · Li, where we do not use the ≡R rule for linearity over a

function symbol. This process can be done in the same fashion for t, meaning
t ≡

∑n
i=1 αi ·ti, where ⟨ti⟩S = Li. Now, we write each Li under its canonical form

Li ≡R
∑l

j=1 βijLij , where Lij is pure. As we have use all the other ≡R rules,
this implies that ti = siv

1
i . . . v

n
i , t′i =

∑l
j=1 βij · tij with tij = siv

1
ij . . . v

n
ij , where

we have developed multiple times a coordinate vki from ti. One can check that
by multiple uses of Lemma 29, ti and t′i are joinable. This also implies that t and∑n

i=1 αi·
∑m

j=1 βij ·tij are joinable, with ⟨tij⟩S = Lij . Now, as Lij is pure, we have
Lij reducing to Mij in k steps, and tij ⇝≤mk vij , with ⟨vij⟩S = Mij . By multiple
calls to Lemma 11,

∑n
i=1 αi ·

∑m
j=1 βij · tij ⇝≤mk

∑n
i=1 αi ·

∑m
j=1 βij ·vij . And as

t is joinable with the left part, t⇝≤mk v where v =
∑n

i=1 αi ·
∑m

j=1 βij ·vij . One
can prove a result similar to Lemma 11 to also get that

∑n
i=1 αi ·

∑m
j=1 βij ·Lij ,

thus L by ≡R reduces to
∑n

i=1 αi ·
∑m

j=1 βij · Nij is k steps; by definition,
N ≡R

∑n
i=1 αi ·

∑m
j=1 βij ·Nij , thus ⟨v⟩S = N , and we can conclude. ⊓⊔
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This result can be expressed in an easier way in the following special case:

Corollary 2. Let ∅;∅ ⊢ s : B
|⟩
1 ↣ . . . ↣ B

|⟩
n ↣ B|⟩, and let R,S =

Translate(s). Let any ∅;∅ ⊢ vi : B
|⟩
i , and let L = ⟨sv1 . . . vn⟩S . If L reduces

to a value M in k steps, then sv1 . . . vn ⇝≤k|s| v where ⟨v⟩S = M .

Remark 3. Both results need to consider more than one set of rules and func-
tion symbols. Indeed, coming back on the example of map, in order to give an
interpretation of mapϕx, when ϕ is closed, we need to provide a function symbol
for ϕ, thus to run the algorithm on ϕ.

Proposition 4. For any well-typed Hyrql term t, R = TranslateEntry(t) is a
well-defined STTRS. Furthermore, if R terminates on any input s in time f(|s|),
then t s reduces in O(|s|3 f(|s|)) and Ω(f(|s|)) steps.

Proof. This is a combination of Theorem 3, Proposition 5, and Theorem 4.
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