
Submitted to:
QPL 2025

A hybrid and reversible quantum language

Kostia CHARDONNET Emmanuel HAINRY Romain PÉCHOUX Thomas VINET

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

We present a typed quantum reversible language that features both classical and quantum data, a
minimal but expandable set of types, quantum superpositions and recursion. We introduce a syntax to
define reversible terms using a set of clauses and pattern-matching; and while verifying reversibility is
undecidable in most cases, we give a decidable predicate to check and find the inverse for a significant
subset of reversible terms. Finally, we discuss about viewing our language as a term-rewriting system
in order to analyze the resources used by a program.

1 Introduction

In quantum computation, measurement is the only non-reversible operation. Moreover, as measurements
can always be delayed, it is natural to consider a purely reversible fragment without measure. Such
fragments have been studied through a quantum functional language, with linear types and algebraic
terms in order to allow for quantum superpositions. This idea has been achieved with a language inspired
from lambda calculus in [2, 10], then a type discipline was given in [1]. From this design, reversibility
has been considered in [6] by defining unitary operations and ensuring only norm-1 superpositions. This
approach nonetheless features only basic types, and superpositions are restricted in their expressivity.
Another approach has been taken in [9], inspired from [7], which uses pattern-matching to define its
reversible terms, called isos. This language features some basic types, recursion, lists as an higher-order
type, and an extension to quantum with term superpositions. This allows to define reversible fragments
on infinite dimension spaces. This language has then been refined in [5, 4, 8] to feature additional types,
to prove soundness of the definitions and discuss about completeness. However, these refinements drop
the quantum aspect, and superpositions are either not present or not normalized. Furthermore, both
approaches only feature linear data.

(Contributions) We present a typed quantum reversible language, which is an enhanced version of the
language designed in [4] with more expressive power. This language has a hybrid design with classical
and quantum control flow, allowing the programmer to build unitaries directly. The type discipline
distinguishes between linear and non-linear terms in a standard manner to delineate a clear separation
between quantum and classical data. It also takes care of only typing terms that are normalized to emulate
a unitary behaviour for iso constructs. We also introduce a struct operator, which allows to extract the
classical structure of quantum data and to use it non-linearly, and gives the language a hybrid behaviour
by computing classical properties of quantum data, for example, the length of a qubit list. This language
is equipped with a rewriting relation, on which we prove standard results like subject reduction. The iso
contructs of [4] define reversible computation and are given a special type for reversibility. Our notion
of isos is strictly more general but reversibility is undecidable. However, it can be restricted to obtain a
decidable criterion, similarly to [8].

This paper is structured as follows. We first introduce the syntax of the language, with its type system
and its operational semantics. We then show different examples of isos to illustrate the expressivity of



2 A hybrid and reversible quantum language

the language, and we give the results obtained so far. Finally, we discuss about future work, and how to
control the resources used by a given program.

2 Language

(Classical types) C ::= BC | C ⇒ T | T ⊸ T | B ↔ B

(Terms types) T ::= BQ | C

(Values) v ::= x | αv | αv1 +βv2 | c(v1, . . . ,vn) | {v1 ↔ t1 | . . .} | λx.v

(Terms) t ::= x | αt | αt1 +β t2 | c(t1, . . . , tn) | let (x1, . . . ,xn) = t1 in t2
| struct(t) | {v1 ↔ t1 | . . .} | fix f .t | λx.t | t1t2

Table 1: Grammar and types for terms and values.

(Types) The language contains built types, which represent types of order 0. Each built type A,B ∈ B
comes with its set of constructors Cons(B) = {c1, . . . ,cn}. We use the notation c :: ×n

i=1Bi → B for
c∈Cons(B) to indicate its input types. Built types can be seen as the disjoint union of quantum, BQ ∈BQ,
and classical, BC ∈ BC, built types. This allows us to define some standard types, for example the unit
type 1 with a single constructor () :: 1. We can also define tensor and cartesian product for given built
types A,B naturally. Inductive types can also be defined; for instance, natural numbers nat are defined
with two constructors: Cons(nat) = {0,S}, with 0 :: nat, S :: nat→ nat. Lists are defined in the same
fashion, with an empty list constructor [ ] and a head-tail constructor h :: t. We can then define classical
types, which contain classical built types, iso constructs, linear and non-linear abstraction. General types
extend classical types by including quantum built types.

(Grammar) The grammar of the language is defined in Table 1. The language contains base elements
of lambda calculus, namely variables in a countable set, abstractions, and term applications. Terms
can be wrapped under a constructor c; the let construct can destruct n-uplets and is also useful to do
intermediate computation. Given a quantum term t, struct(t) extracts its structure to use it classically:
for a list of qubits t = |0⟩ :: |1⟩ :: [ ], struct(t) is a classical list of same size, with no information
about the values of the qubits. Any quantum term can be superposed, and the type discipline ensures
normalization; we add an equivalence relation ≡ on superpositions, shown in the appendix, such that
we have linearity for isos and constructors, and we can define the summation symbol ∑ unambiguously.
This allows us to define pure terms as terms that cannot be expanded linearly under this relation; we can
then give each term an unique canonical form ∑i αiti ∈ CAN. Finally, an iso construct, written ω , is made
of multiple clauses between values and terms, on which we add constraints below to obtain reversibility.

Γ;∆i ⊢ ti : BQ ∀i ̸= j, ti ⊥ t j ∑
n
i=1 |αi|2 = 1

Γ;∆1, . . . ,∆n ⊢ ∑
n
i=1 αiti : BQ

Γ;∆ ⊢ t1 : C ⇒ T Γ;∅ ⊢ t2 : C

Γ;∆ ⊢ t1t2 : T

Γ;∆i ⊢ vi : A Γ;∆i ⊢ ti : B iso({v1 ↔ t1 | . . .})
Γ;∅ ⊢ {v1 ↔ t1 | . . .} : A ↔ B

Γ,x : C;∆ ⊢ t : T

Γ;∆ ⊢ λx.t : C ⇒ T

Γ;∆,x : T ⊢ t : T ′

Γ;∆ ⊢ λx.t : T ⊸ T ′

Table 2: Excerpt of the typing rules for terms

(Typing rules) We present a glimpse of the typing rules in Table 2. Due to space limitation, we
present only the most important rules here, but all of them are available in the appendix. The typing



K. Chardonnet, E. Hainry, R. Péchoux & T. Vinet 3

context Γ;∆ has a linear typing discipline and is split in two: a non-linear context Γ made only of classical
variables x : C; and a linear context ∆ which can contain any variable. As we want well-typed terms to be
normalized, the superposition’s typing requires that terms are two by two orthogonal and phases satisfy
a normalization condition. Orthogonality is given by the predicate ⊥ defined in the appendix on BQ.
Finally, we impose a semantic definition iso(ω) that requires isos to be reversible and also that any pure
value will match uniquely one or a superposition of branches of a given iso.

t → t ′

CE(t)→CE(t ′) fix f .ω → ω[ f/fix f .ω] (λx.t)v → t[x/v]

σ(p) = v

let p = v in t → σ(t)

v = ∑i αiσi(vi) FV(v) = /0

{v1 ↔ t1 | . . .}v → ∑i αiσi(ti)
t → t ′

t⇝ t ′
t ≡ ∑i αiti ∈ CAN ti

=→ t ′i ∃i0, ti → t ′i
t⇝ ∑i αit ′i

Table 3: Excerpt of the semantic reduction rules

(Operational semantics) The language comes with a general reduction relation ⇝ acting on terms
which follows a call-by-value strategy. We again present some rules in Table 3, and the exhaustive set of
rules is in the appendix. Reduction is first defined on pure terms with →, then is extended by reducing
each term of the canonical form when t is not a value. CE represents an evaluation context, defined in the
appendix; σ is a partial map from variables to values and called a substitution.

3 Examples and results

In this language, we are able to type lists superpositions, for example 1√
2
(|0⟩ :: |0⟩ :: [ ]+ |1⟩ :: |1⟩ :: [ ]).

Isos can represent various transformations: the Hadamard matrix, a map function acting on each element
of a list, measuring the length of a quantum list, etc. It can also simulate quantum control.

Had= {|0⟩ ↔ 1√
2
|0⟩+ 1√

2
|1⟩ | |1⟩ ↔ 1√

2
|1⟩− 1√

2
|0⟩}

map= λφ .fix f .{[ ]↔ [ ] | h :: t ↔ φh :: f t}
len t = (fix f .{[ ]↔ 0 | h :: t ↔ S f t})struct(t)

QSwitch= λ f .λg.{|0⟩⊗q ↔ |0⟩⊗ f (gq) | |1⟩⊗q ↔ |1⟩⊗g( f q)}

Property (Subject reduction). Let Γ;∆ ⊢ t : T a well-typed term. If t⇝ t ′, then Γ;∆ ⊢ t ′ : T .

Lemma. Let ω = {vi ↔ ei}, where ei is a succession of let constructors. Then we have a predicate on
ω that can verify reversibility and exhibits the inverse iso.

4 Future work

We have introduced a hybrid and reversible quantum language, that features both classical and quantum
terms, with more expressive power. We intend to view our language (especially isos) as a term rewriting
system. Using this, we could use some known techniques in order to guarantee some complexity bounds
on the resources used for a given program. One technique we can use on term-rewriting sytems to achieve
this is to use quasi-interpretations [3]. This allows us to have more control on the resources that a given
program uses, for example the number of gates used, the depth of a circuit, etc.



4 A hybrid and reversible quantum language

References

[1] Pablo Arrighi, Alejandro Díaz-Caro & Benoît Valiron (2017): The Vectorial λ -Calculus. Information and
Computation 254, pp. 105–139, doi:10.1016/j.ic.2017.04.001.

[2] Pablo Arrighi & Gilles Dowek (2017): Lineal: A Linear-Algebraic Lambda-calculus. Logical Methods in
Computer Science Volume 13, Issue 1, doi:10.23638/LMCS-13(1:8)2017.

[3] G. Bonfante, J. Y. Marion & J. Y. Moyen (2011): Quasi-Interpretations a Way to Control Resources. Theo-
retical Computer Science 412(25), pp. 2776–2796, doi:10.1016/j.tcs.2011.02.007.

[4] Kostia Chardonnet, Louis Lemonnier & Benoît Valiron (2024): Semantics for a Turing-Complete Reversible
Programming Language with Inductive Types. In Jakob Rehof, editor: 9th International Conference on For-
mal Structures for Computation and Deduction (FSCD 2024), Leibniz International Proceedings in Informat-
ics (LIPIcs) 299, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 19:1–19:19,
doi:10.4230/LIPIcs.FSCD.2024.19.

[5] Kostia Chardonnet, Alexis Saurin & Benoît Valiron (2023): A Curry-Howard Correspondence
for Linear, Reversible Computation. LIPIcs, Volume 252, CSL 2023 252, pp. 13:1–13:18,
doi:10.4230/LIPICS.CSL.2023.13.

[6] Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel & Benoît Valiron (2019): Realizability in the
Unitary Sphere. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp.
1–13, doi:10.1109/LICS.2019.8785834. arXiv:1904.08785.

[7] Roshan P. James & Amr Sabry (2012): Information Effects. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Popl ’12, Association for Com-
puting Machinery, New York, NY, USA, pp. 73–84, doi:10.1145/2103656.2103667.

[8] Louis Lemonnier (2024): The Semantics of Effects : Centrality, Quantum Control and Reversible Recursion.
Ph.D. thesis, Université Paris-Saclay.

[9] Amr Sabry, Benoît Valiron & Juliana Kaizer Vizzotto (2018): From Symmetric Pattern-Matching to Quantum
Control. In Christel Baier & Ugo Dal Lago, editors: Foundations of Software Science and Computation
Structures, Springer International Publishing, Cham, pp. 348–364, doi:10.1007/978-3-319-89366-2_19.

[10] Lionel Vaux (2009): The Algebraic Lambda Calculus. Mathematical Structures in Computer Science 19(5),
pp. 1029–1059, doi:10.1017/S0960129509990089.

A Appendix

We define the equivalence relation ≡ between terms in Table 4. Given a term t, we can find its unique
canonical form given as t = ∑i αiti, where αi ̸= 0, ti ̸= t j, and ti are pure terms, i.e. cannot be developed
under the last two rules.

t1 + t2 ≡ t2 + t1 t1 +(t2 + t3)≡ (t1 + t2)+ t3 1 · t ≡ t t +0 · t ′ ≡ t

α · (β · t)≡ αβ · t α · (t1 + t2)≡ α · t1 +α · t2 (α +β ) · t ≡ α · t +β · t
ω(∑αi · ti)≡ ∑αi ·ωti c(t1, . . . ,∑i αi · t i

j, . . . , tm)≡ ∑i αi · c(t1, . . . , t i
j, . . . , tm)

Table 4: Equivalence relation for superposition of quantum terms

The following tables contain the definition of the orthogonality predicate ⊥, and the typing rules.
The notation [x : T ] means that this context is optional. The type F represents an iso-like type: F ::= A ↔
B | T ⊸ F | C ⇒ F .

https://doi.org/10.1016/j.ic.2017.04.001
https://doi.org/10.23638/LMCS-13(1:8)2017
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.4230/LIPIcs.FSCD.2024.19
https://doi.org/10.4230/LIPICS.CSL.2023.13
https://doi.org/10.1109/LICS.2019.8785834
https://arxiv.org/abs/1904.08785
https://doi.org/10.1145/2103656.2103667
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1017/S0960129509990089


K. Chardonnet, E. Hainry, R. Péchoux & T. Vinet 5

i ̸= j

|i⟩ ⊥ | j⟩
v ⊥ v′

v⊗q ⊥ v′⊗q′
v ⊥ v′

q⊗ v ⊥ q′⊗ v′
∀i ̸= j,vi ⊥ v j ∑

d
i=1 αiα

′∗
i = 0

∑αivi ⊥ ∑α ′
i vi

t ∗
⇝ v t ′ ∗

⇝ v′ v ⊥ v′

t ⊥ t ′

Table 5: Rules for the orthogonality of quantum states.

Γ;x : T ⊢ x : T Γ,x : C;∅ ⊢ x : C

Γ;∆i ⊢ ti : Bi c :: ×n
i=1Bi → B

Γ;∆1, . . . ,∆n ⊢ c(t1, . . . , tn) : B

Γ;∆i ⊢ ti : BQ ∀i ̸= j, ti ⊥ t j ∑
n
i=1 |αi|2 = 1

Γ;∆1, . . . ,∆n ⊢ ∑
n
i=1 αiti : BQ

Γ;∆ ⊢ t : ×n
i=1Ai Γ;∆′,x1 : A1, . . . ,xn : An ⊢ t ′ : B

Γ;∆,∆′ ⊢ let (x1, . . . ,xn) = t in t ′ : B

Γ;∆ ⊢ t : B

Γ,struct(t) : ⋄B;∅ ⊢ struct(t) : ⋄B

Γ;∆i ⊢ vi : A Γ;∆i ⊢ ti : B iso({v1 ↔ t1 | . . .})
Γ;∅ ⊢ {v1 ↔ t1 | . . .} : A ↔ B

Γ, f : F ⊢ ω : F

Γ;∅ ⊢ fix f .ω : F

Γ,x : C;∆ ⊢ t : T

Γ;∆ ⊢ λx.t : C ⇒ T

Γ;∆,x : T ⊢ t : T ′

Γ;∆ ⊢ λx.t : T ⊸ T ′

Γ;∆ ⊢ t1 : C ⇒ T Γ;∅ ⊢ t2 : C

Γ;∆ ⊢ t1t2 : T

Γ, [struct(t2) : ⋄T ];∆ ⊢ t1 : T ⊸ T ′ Γ;∆′ ⊢ t2 : T

Γ;∆,∆′ ⊢ t1t2 : T ′

Γ;∅ ⊢ ω : A ↔ B Γ;∆ ⊢ t : A

Γ;∆ ⊢ ωt : B

Table 6: Complete typing rules for terms

The table below contains all the reduction rules. =→ denotes the reflexive closure, meaning there is
either no reduction step or one reduction step. The evaluation context is defined formally as:

CE ::= [ ] | c(v1, . . .CE , tm, . . .) | let p =CE in t | let p = v in CE | struct(CE)

where v,v1 are values, t, tm are terms, and c is a constructor.

The table below contains the predicate OD that is used to prove reversibility. This predicate is de-
fined only for values of order 0. We split constructors as Cons(B) = Cons(B)+ ∪Cons(B)0, meaning
constructors with at least one input and constructors with no input.



6 A hybrid and reversible quantum language

t → t ′

CE(t)→CE(t ′) fix f .ω → ω[ f/fix f .ω] (λx.t)v → t[x/v]

σ(p) = v

let p = v in t → σ(t)

v : Qd

struct(v)→ d

Γ;∅ ⊢ v : BC

struct(v)→ v

c :: B1 × . . .Bn → B Γ;∆i ⊢ vi : Bi B ∈ BQ, B ̸= Qd

struct(c(v1, . . . ,vn))→ c̃(struct(v1), . . . ,struct(vn))

v = ∑i αiσi(vi) FV(v) = /0

{v1 ↔ t1 | . . .}v → ∑i αiσi(ti)

t → t ′

t⇝ t ′ struct(αv1 +βv2)⇝ struct(v1)

t ≡ ∑i αiti ∈ CAN ti
=→ t ′i ∃i0, ti → t ′i

t⇝ ∑i αit ′i

Table 7: Complete semantic reduction rules

ODA({x})
ODA(π1(S)) ∀a ∈ π1(S),ODB(S1

a)

ODA×B(S)

ODA(π2(S)) ∀b ∈ π2(S),ODB(S2
b)

ODA×B(S)

ODA(S) (αe,v)(e,v)∈S×S is a unitary matrix

ODA({∑v∈S αe,vv | e ∈ S})

∀ci :: B⃗i → B ∈ Cons(B)+,ODB⃗i
(Si)

ODB((∪c∈Cons(B)0c)∪ (∪ci∈Cons(B)+ci(Si)))

Table 8: Definition of OD


	Introduction
	Language
	Examples and results
	Future work
	Appendix

