
The Geometry of Quantum Compilation1

Anonymous author2

Anonymous affiliation3

Abstract4

We introduce a compilation algorithm turning any term of a linear quantum λ-calculus into a5

quantum circuit with classical wires. The essential ingredient of the proposed algorithm is Girard’s6

geometry of interaction, which, differently from its well-known uses from the literature, is here7

leveraged to anticipate the classical computation as much as possible, while producing a circuit that,8

when executed, corresponds to the underlying quantum part of the λ-term. Noticeably, the circuit9

construction takes time linear in the size of the underlying type derivation, without incurring the10

exponential blowup encountered when using plain operational semantics.11

2012 ACM Subject Classification Theory of computation → Quantum computation theory12

Keywords and phrases Lambda Calculus, Quantum Computation, Geometry of Interaction, Quantum13

Compilation14

1 Introduction15

Quantum computing holds immense potential to revolutionize various areas of computer16

science by solving complex problems much faster than classical computing [26, 42]. This is due17

to its ability to leverage the power of quantum bits, thanks to the principles of superposition18

and entanglement. One of the fascinating aspects of quantum computing is the diversity of19

model architectures being explored. These include gate-based quantum computing, but also20

quantum annealing [29], topological quantum computing [30], and others.21

On the side of high-level quantum programming languages, the QRAM model of quantum22

computation [31] is certainly one of the most successful ones. There, a classical computing23

machine interacts with a quantum processor by instructing the latter to create new qubits,24

apply some unitary transformations to the existing qubits, or measure (some of) them. In25

other words, computation consists of a sequence of interactions between the classical machine26

and the quantum processor, similarly to what happens when programming in presence of27

an external storage device. Thanks to measurements, however, the overall evolution (and28

the computation’s final result) can be probabilistic. Moreover, the classical computer and29

the quantum processor do not follow the same rules: while the former is a purely classical30

device, the latter’s internal state consists of a finite number of qubits, each of them being31

manipulated following the laws of quantum mechanics. In particular, quantum bits cannot32

be erased nor duplicated, and the operations the quantum processor can perform are of a33

very specific shape.34

Based on this model, several quantum programming languages have been developed,35

from assembly code [10, 9], to imperative programming languages with loops and classical36

tests [15], to functional programming languages and λ-calculi [41]. All these languages37

share the same core principle: they manipulate an external quantum memory and can apply38

quantum operations to it. As the program is executed, the quantum memory is updated39

until it reaches a final state. As such, then, they precisely follow the QRAM model. In40

particular, between any pair of interaction points, the underlying classical machine can41

perform an arbitrary amount of work. More recently, a different family of programming42

languages [35, 14, 3, 6, 14] is instead more focused on what happens inside the quantum43

memory and allow the user to write custom-made quantum operations through so-called44

quantum conditionals.45

2 The Geometry of Quantum Compilation

However, there is a fracture between the aforementioned programming paradigms, and46

the reality of quantum computing. Most quantum architectures are currently very hard to be47

accessed interactively, requiring a whole circuit to be sent to them. The latter is first created48

in its entirety by a classical algorithm, and then processed and optimized for the specific49

architecture. As a result, quantum programs are, in practice, often written down either as50

programs representing one quantum circuit [10], or as programs in so-called circuit description51

languages, like Qiskit [28], Cirq [43], or Quipper [24, 23]. These languages manipulate52

circuits as ordinary data structures, often taking the form of libraries for mainstream53

programming languages. This separates circuit construction from circuit execution, enabling54

optimization and transpilation. Programming is thus seen as the direct construction of55

quantum circuits and the model is no longer the one of QRAM: the program’s task consists56

in building a circuit, and not of interacting with a quantum device.57

It is thus natural to ask whether it is possible to reconcile the approach where programming58

follows the QRAM model with the need to produce complete circuits, thereby being able59

to target existing hardware architectures. This work can be seen as giving an answer to60

the following question: would it be possible to compile QRAM languages, and in particular61

functional languages with higher-order functions [41], down to quantum circuits, this way62

anticipating the classical work and postponing as much as possible the quantum operations?63

Moreover, would it be possible to do that efficiently in presence of both measurements and64

conditionals? As detailed in Section 2 below, this is not trivial and cannot be easily solved65

by relying on the usual, rewriting based operational semantics of the underlying language. A66

conditional whose branches have a higher-order type, indeed, cannot be easily and efficiently67

compiled to a conditional of the target circuit language: as soon as a branching is opened, it68

is difficult to unify the two branches, effectively closing the branching. This can give rise to69

an exponential blowup in the size of the underlying circuit, a well-known phenomenon which70

shows up, e.g., in the related problem of dynamically lifting [16] the value of a Boolean in71

circuit description languages.72

Contributions. In this work we propose a new compilation procedure for the linear73

fragment of Selinger & Valiron quantum λ-calculus [41] onto a paradigmatic quantum circuit74

model corresponding to a fragment of the QASM language [10]. Notably, our procedure75

gets rid of both higher-order operations and classical control, and thus provides an effective76

approach to answer the following question: given some well-typed term of first-order type in77

which higher-order functions and conditionals can possibly occur, is it possible to efficiently78

compute the underlying circuit, effectively anticipating as much as possible the classical79

work? The fundamental ingredient of our compilation scheme is Girard’s Geometry of80

Interaction (GoI for short) [20, 19], a semantic framework for linear logic proofs which is81

has been variously used to derive suitable abstract machines [36, 13, 1] and circuit synthesis82

algorithms [17]. The basic idea of the GoI translation can be described as follows: given a83

type derivation π with conclusion Γ ⊢ M : A, one introduces a finite set of tokens which84

can travel along occurrences of base types in Γ and A throughout the type derivation;85

the paths followed by such tokens then give rise to a circuit relating positive and negative86

occurrences of ground types in the conclusion of π. In our approach, we consider typing87

derivations for a linear quantum λ-calculus, and, by following the paths of tokens a quantum88

circuit is progressively produced. In these circuits, the inputs and outputs corresponds89

respectively to the negative and positive occurrences of the types bit and qbit. For instance,90

a type derivation of x : qbit, y : qbit ⊢ M : qbit⊗ qbit (where M might indeed contain91

higher-order operations as well as conditionals) will, after compilation, give rise to a standard92

quantum circuit with two input qubits and two output qubits.93

Anonymous author(s) 3

Our compilation procedure works in two steps: first, the typing derivation is translated via94

GoI onto a language for quantum circuits with classical control. Then, a second compilation95

step takes place, which translates the circuit onto a QASM circuit, notably eliminating the96

use of classical control flow. The whole compilation scheme works in time linear in the97

size of the underlying type derivation π. As described in Section 7, the approach is robust98

enough to be adapted to calculi with graded monads. After presenting the compilation99

procedure, we establish its soundness: we prove that, whenever a term M of the linear100

quantum λ-calculus, on a given input state |ϕ⟩, produces a distribution of states after the101

(probabilistic) rewriting, then the circuit produced by compiling M , on input state |ϕ⟩, will102

produce the same distribution. To this purpose, we exploit a simulation result with respect103

to another GoI interpretation of quantum λ-calculi [11], but also relying on the completely104

positive maps interpretation of quantum circuits [39].105

An extended version of this paper is available as supplementary material.106

2 A Bird’s Eye View on the Problem107

This section aims at informally introducing the challenges addressed in this paper, while at108

the same time analyzing the difficulties that lie ahead.109

Suppose we are dealing with the following term, written in a standard quantum λ-calculus
akin to those introduced in the literature:

M := letx = (if N then L else P) in Q.

Suppose further that the branches L and P have higher-order type and that the guard N is110

a term of Boolean type whose value is produced through some form of quantum computation.111

Consider, for example, the case where N is meas(H(new ff)), while L and P are λx.x and112

λx.H(x), respectively. Here, H stands for the Hadamard gate of quantum computing, while113

new and meas initializes and measure a qubit, respectively.114

Suppose we want to compile M into an equivalent quantum circuit. We could proceed115

by executing M using the operational semantics of the underlying language, in the form of116

a reduction relation or an abstract machine. In evaluating N , such semantics would not117

perform any quantum operations, but would produce a circuit in the following form:118

|0⟩ H119

As the Boolean produced by N depends on a measurement, its value would not be known120

at circuit-building time, but only at circuit-execution time. Therefore, it is clear that both121

branches of the conditional instruction if N then L else P should be executed. The two122

branches, however, are two values having functional types, so how could we proceed? If we123

wanted to keep the machine we are defining compliant with the reduction semantics, it would124

be natural to proceed by evaluating Q[x ← L] and Q[x ← P] onto two circuits CQ,L and125

CQ,P . The overall circuit constructed would then have the following form:126

CL,Q

... CP,Q

|0⟩ H

127

4 The Geometry of Quantum Compilation

Why is this way of proceeding problematic? The point is that there is a risk of an exponential
blowup in the size of the produced circuit. Suppose we generalize the above example to a
family of terms Mn = Rn

n, where

Rm
n+1 := letxn = (if N then L else P) in Rm

n ; Rm
0 = λx.x1(x2(. . . (xmx))).

It is clear that by proceeding as above while compiling Mn, we would obtain a circuit of128

exponential size in n consisting of n levels of nested conditionals. It is equally clear, however,129

that there is a simpler circuit which corresponds to the term Mn, namely the following:130

. . .H H

|0⟩ H

|0⟩ H

131

The technique we propose in this work goes precisely in this direction and allows us to132

compile the terms Mn into the circuit above, thus avoiding the exponential blowup arising133

from standard operational semantics.134

3 Calculus135

In this section we briefly describe the syntax and operational semantics of the λ-calculus136

which we consider as a source language, which we call λQ. This is a linear version of Selinger137

and Valiron’s quantum λ-calculus, [41], almost identical to the one considered in [32].138

The language consists of the standard linear λ-calculus, with pairs and let constructions,139

as well as Booleans and conditionals. Quantum operators are available as term constants.140

We define the set of terms, noted ΛQ, as follows:141

ΛQ ∋M,N,P ::= x | λx.M |M N Function Operators142

| ⟨M,N⟩ | let ⟨x, y⟩ = M in N Pair Operators143

| tt | ff | if M then N else P Booleans & Conditionals144

| c Quantum Operations145
146

Here, x ranges over an infinite set of variables, while c ranges over a finite set Q of term con-147

stants. We sometimes use standard syntactic sugar, e.g. letx = M in N or λx1, . . . , xn.M .148

Values can be defined in the natural way. The set Q includes three kinds of quantum149

operations: new, that creates a qubit from a bit, meas, that implements the so-called meas-150

urement operation, and operators implementing a universal set of quantum gates (e.g., the151

set {H,S, T,CNOT}, also called Clifford + T).152

▶ Example 1. A term QCF implementing a fair quantum coin-flip can be written down as153

QCF := meas(H(new ff)). This is precisely the term N we considered in the introduction.154

The λQ-calculus comes equipped with a type system based on linear logic [18]. In this155

type system, every piece of data has to be used exactly once. This means that nothing156

can be duplicated nor erased, hence respecting the laws of quantum physics regarding the157

non-duplication of arbitrary data. The type system contains two kind of base types, the158

classical bits (denoted bit) and quantum bits (denoted qbit). They can then be combined159

through tensors or function types:160

A,B ::= qbit | bit | A⊸ B | A⊗B161

Anonymous author(s) 5

x : A ⊢ x : A
∆ ⊢ M : A⊸ B Γ ⊢ N : A

∆, Γ ⊢ M N : B
∆ ⊢ M : bit Γ ⊢ N : A Γ ⊢ P : A

∆, Γ ⊢ if M then N else P : A

Figure 1 Examples of typing rules of λQ.

A type context (denoted Γ,∆) is a set of pairs of variables and their corresponding types.162

We denote by B the base types: B ::= bit | qbit. The map T attributes types to163

the operators in Q in the natural way, e.g. T (CNOT) = qbit ⊗ qbit ⊸ qbit ⊗ qbit,164

T (meas) = qbit⊸ bit, and T (new) = bit⊸ qbit.165

Typing is itself standard. Judgments take the form Γ ⊢ M : A, where Γ is a typing166

context. An excerpt of the typing rules is in Figure 1 (see [5] for the details):167

▶ Example 2. The term QCF from Example 1 is a well-typed term of type bit under the168

empty context.169

The calculus λQ can be naturally endowed with a call-by-value reduction semantics.170

While linear functions and pairs can be treated in a completely standard way, quantum data171

and quantum operations require some care. In order to manipulate them, λQ makes use172

of an external quantum register in which the qubits the underlying program manipulates173

are stored. Each variable representing a quantum data is linked to a certain qubit in the174

quantum memory. When applying a quantum operation to these e variables, the qubits175

corresponding to those variables will be modified accordingly. This is formalized through the176

notion of a quantum closure.177

A quantum closure, (or simply closure). This is a triple [Q,L,M] where L = [x1, . . . , xn] is178

a list of variables, and Q is a normalized vector of C2n . The evaluation contexts, indicated with179

metavariables like E, are defined in the natural way, and as usual, E[M] is the term we obtain180

from E by filling the hole [·] with the term M . We write M [x← N] for the capture-avoiding181

substitution of x in M by the term N . The operational semantics of λQ, following [41], is182

probabilistic and generated by relations M →p N , for p ∈ [0, 1], corresponding to the fact183

that M reduces to N with probability p. Such relations are generated by three kinds of rules.184

First of all, we have standard deterministic rules for the λ-calculus, which are defined for185

closures but which only act on their third components, e.g.,186

[Q,L, (λx.M)V]→1 [Q,L,M [x← V]]187

[Q,L, if tt then M else N]→1 [Q,L,M]188
189

Then, there are rules which serve to give meaning to the operators in QCF , e.g.,190

[Q,L,U⟨xj1 , . . . , xjn
⟩]→1 [R,L, ⟨xj1 , . . . , xjn

⟩]191

[Q,L, new tt]→1 [Q⊗ |1⟩ , L ∪ {y}, y]192

[α |Q0⟩+ β |Q1⟩ , L, meas x]→|α|2 [|Q0⟩ , L, ff]193

[α |Q0⟩+ β |Q1⟩ , L, meas x]→|β|2 [|Q1⟩ , L, tt]194
195

where R is obtained from Q by applying the gate U to the qubits j1, . . . , jn, while |Q0⟩ and196

|Q1⟩ are normalized states of the form
∑

j αj

∣∣ψi
j

〉
⊗ |i⟩ ⊗

∣∣ϕi
j

〉
for i ∈ {0, 1}, respectively.197

Finally, we have a rule for congruence:198

[Q,L,E[M]]→p [R, J,E[N]] whenever [Q,L,M]→p [R, J,N]199

We denote by M →∗
p N the existence of terms M1 = M,M2, . . . ,Mn = N and reals200

p1, . . . , pn−1 ∈ [0, 1] such that Mi →pi
Mi+1, for i = 1, . . . , n− 1 and p =

∏
i pi.201

6 The Geometry of Quantum Compilation

[−,−,M] = [−,−, (λx.CNOT(H x, new ff)) (new ff)]
→1 [|0⟩ , [y], (λx.CNOT(H x, new ff)) y] Evaluate new ff

→1 [|0⟩ , [y],CNOT(H y, new ff)] Substitute y

→1 [|0⟩+ |1⟩√
2

, [y],CNOT(y, new ff)] Evaluate H y

→1 [|0⟩+ |1⟩√
2
⊗ |0⟩ , [y, z],CNOT(y, z)] Evaluate new ff

→1 [|00⟩+ |11⟩√
2

, [y, z], (y, z)] Evaluate CNOT

(a) Example of evaluation of a closure.

|0⟩ H

|0⟩

(b) Corresponding circuit.

Figure 2 Evaluation in λQ.

We say that a quantum closure [Q,L,M] is of type A under context Γ, denoted Γ ⊢202

[Q,L,M] : A if L = [x1, . . . , xn] and Γ, x1 : qbit, . . . , xn : qbit ⊢ M : A is a valid typing203

judgement.204

We can prove basic results like a substitution lemma, type preservation and progress in a205

standard way (see, again [5] for some more details). As an example, subject reduction can be206

formulated as follows: if Γ ⊢ [Q,L,M] : A and [Q,L,M]→p [R, J,N] then Γ ⊢ [R, J,N] : A.207

Progress instead becomes the following: given a well-typed quantum closure ⊢ [Q,L,M] : A,208

either M is a value or [Q,L,M]→p [Q′, L′,M ′]. Finally, we can also prove that reduction is209

normalizing. As a consequence, any closure [Q,L,M] uniquely determines a finite distribution210

evalλ[Q,L,M] =
∑k

i=1 piQi of quantum states, so that [Q,L,M]→∗
pi

[Qi, Li, V].211

▶ Example 3. Consider the term M = (λf.λx.CNOT(f x, new ff)) (new ff) : qbit⊗ qbit.212

We illustrate its reduction in Figure 2a, where Q and L are initially empty (as there are no213

free variables in M). This term computes the Bell’s State (also call EPR pair), notice that214

we used higher-order functions to change the state of the second qubit by feeding another215

argument instead of new ff. The quantum circuit representing this example is the one in216

Figure 2b, and in Section 5, we will show how the compiling procedure produces it.217

4 Quantum Circuits218

In this section we introduce a language for quantum circuits with classical if-then-else, called219

QC, and we describe its interpretation in the compact closed category of completely positive220

maps [39, 40]. Then, we show that any circuit is equivalent to one without if-then-else, by221

describing a procedure to eliminate the use of classical control flow.222

4.1 Quantum Circuits with Classical Control Flow223

Let L be an infinite set of labels, indicated as l, r, to be used as names for the wires of circuits.224

The types and terms (called circuits) of QC are defined below:225

B ::= bit | qbit Base Types226

A,B ::= B | A⊗B Types227

C,D ::= UΓ
∆ | C;D | if C then D else E Circuits228

229

where U ∈ Q and the environment are defined as Γ,∆ ::= ∅ | Γ ∪ {l : B}. We require230

that any label occurs at most once in an environment. We denote as Γ ⊗∆ the union of231

environments Γ and ∆, with the proviso that Γ,∆ have no label in common. The expression232

Anonymous author(s) 7

∅▷ 0▷ bit
0 ∅▷ 1▷ bit

1
UΓ

∆ ∈ Q

Θ1 ⊗ Γ ⊗ Θ2 ▷ UΓ
∆ ▷Θ1 ⊗ ∆ ⊗ Θ2

Q

Γ▷ C ▷Ψ Ψ▷D ▷∆
Γ▷ C; D ▷∆

; Γ1 ▷ C ▷ bit ⊗ Φ Γ2 ▷D ▷∆ Γ2 ▷ E ▷∆
Γ1 ⊗ Γ2 ▷ if C then D else E ▷ Φ ⊗ ∆ ite

Figure 3 Circuit typing rules.

UΓ
∆ indicates a gate from Γ to ∆, which we may also note as U : Γ → ∆. For example,233

considering l1, l2, l3, l4 labels pointing to some qubits, we can have CNOT{l1:qbit,l2:qbit}
{l3:qbit,l4:qbit}.234

A type judgement for a circuit C is an expression of the form Γ▷C▷∆. Type judgements235

are deduced via the rules in Fig. 3. Notice that, in the rule Q, if U is from Γ to ∆, then it236

can be typed with additional contexts Θ1,Θ2. Intuitively, the corresponding circuit is the237

tensorized gate IdΘ1 ⊗ U ⊗ IdΘ2 ; in other words, we will consider each gate as acting on all238

qubits, and not just on a subset of the available qubits. This allows us to not consider an239

operator for parallel composition.240

We interpret circuits in terms of density matrices and completely positive maps, as in [40].241

The category CPM has for objects finite tuples of positive numbers σ = (n1, . . . , nk) and as242

morphisms completely positive maps Vσ → Vσ′ where V(n1,...,nk) = Cn1×n1 × · · · × Cnk×nk .243

CPM is symmetric monoidal closed (in fact, dagger compact closed, cf. [41]), with tensor244

product (n1, . . . , nk)⊗(m1, . . . ,mk) = (n1m1, . . . , nkmk) and an isomorphism Vσ⊗τ ≡ Vσ⊗Vτ245

as well as a unit 1 = (1). Via the natural isomorphism ΦA,B,C : CPM(ρ ⊗ σ, τ) →246

CPM(ρ, σ⊗ τ), sending f ∈ CPM(ρ⊗σ, τ) into g(s) =
∑

b∈B(Vσ) b⊗ f(s⊗ b), where B(Vσ)247

is a basis for Vσ, the tensor product is also the hom-object of CPM.248

We interpret each type of QC as an object of CPM via JbitK = (1, 1), JqbitK = (2) and249

JA ⊗ BK = JAK ⊗ JBK. The interpretation of an environment Γ is given by J∅K = 1 and250

JΓ ∪ {l : B}K = JΓK⊗ JBK.251

In order to interpret the typing judgments we need an interpretation of the gates U ∈ Q.252

For each gate UΓ
∆, we define the function JUK : (1)→ JΓ⊸ ∆K as follows:253

for each quantum gate U : qbitn → qbitn, with U ∈ {H,S, T,CNOT}, we define254

JU : qbitn ⊸ qbitnK = Φ(x 7→ ÛxÛ†) : (1) → JqbitKn ⊗ JqbitKn, where we use U255

also to indicate the corresponding linear map U : C2n → C2n , and where Û ∈ C2n×2n

256

indicates the matrix given by Ûij = ei · (Uej).257

J0K(x) = (x, 0) : (1)→ JbitK and J1K(x) = (0, x) : (1)→ JbitK,258

JnewK = Φ(ι) : (1)→ JbitK⊗ JqbitK, where ι : (1, 1)→ (2) is the map (a, b)→
(
a 0
0 b

)
,259

JmeasK = Φ(p) : (1)→ JqbitK⊗JbitK, where p : (2)→ (1, 1) is the map
(
a b

c d

)
→ (a, d),260

Finally, for any type judgment Γ ▷ C ▷∆ we define a completely positive linear map261

JCK : JΓK→ J∆K by induction, as illustrated in Fig. 4, where in the last rule we used the fact262

that JbitK⊗ JΦK is isomorphic to JΦK× JΦK, so that f : JΓ1K→ JbitK⊗ JΦK can be split into263

two maps f0, f1 : JΓ1K→ JΦK.264

4.2 Eliminating Classical Control Flow265

We now show how, for any QC-circuit C, it is possible to eliminate all uses of the if-then-else266

constructor, thus producing a standard quantum circuit that computes the same completely267

positive map.268

8 The Geometry of Quantum Compilation

J∅▷ 0▷ bitK(x) = (x, 0) J∅▷ 1▷ bitK(x) = (0, x)

JΓ▷ C ▷ΨK = f : JΓK → JΨK
JΨ▷D ▷∆K = g : JΨK → J∆K

JΓ▷ C; D ▷∆K = g ◦ f : JΓK → J∆K

UΓ
∆ ∈ Q

JΘ1 ⊗ Γ ⊗ Θ2 ▷ UΓ
∆ ▷Θ1 ⊗ ∆ ⊗ Θ2K = Id|Θ1| ⊗JUK ⊗ Id|Θ2|

JΓ1 ▷ C ▷ bit ⊗ ΦK = f : JΓ1K → JbitK ⊗ JΦK
JΓ2 ▷D ▷∆K = g1 : JΓ2K → J∆K
JΓ2 ▷ E ▷∆K = g2 : JΓ2K → J∆K

JΓ1, Γ2 ▷ if C then D else E ▷ Φ ⊗ ∆K(x ⊗ y) = (f0(x) ⊗ g1(y)) + (f1(x) ⊗ g2(y))
: JΓ1K ⊗ JΓ2K → JΦK ⊗ J∆K

Figure 4 From type judgement to completely positive maps.

▶ Theorem 4. For any circuit Γ▷ C ▷∆ of size n there exists an if-then-else-free circuit269

Γ▷D ▷∆ of size O(n) such that JCK = JDK.270

Proof sketch. For each base type B = bit, qbit one can easily construct an if-then-else271

circuit B-Swap as below left, satisfying the two equations below right272

bit
B
B

bit
B
B

B-Swap B-Swap
tt

=
tt

B-Swap
ff

=
ff

273

By sequentially composing the circuits B-Swap one can then, for any environment Γ, construct274

a circuit bit⊗Γ▷Γ-Swap▷bit⊗Γ that behaves in a similar way. Then, we can replace any275

sub-circuit of C of the form Γ⊗Γ′▷if C1 then C2 else C3▷∆⊗∆′, where Γ▷C1▷bit⊗∆276

and Γ′ ▷ C2, C3 ▷∆′, with the circuit below277

C1

Γ′

Γ

|0⟩

Γ′-Swap

C2

C3 ∆′-Swap ∆′

∆

meas

278

where the gate indicates a discarded bit. Observe that, if C1 produces the bit tt, then279

the circuit above will compute C2 and “kill” C3, that is, feed it with |0⟩ and measure and280

discard its result; conversely, if C1 produces the bit ff, then the circuit above will similarly281

compute C3 and “kill” C2. ◀282

5 The Quantum Circuit Token Machine283

In this section we introduce the quantum circuit machine QCSIAM (Quantum Circuit284

Synchronous Interaction Abstract Machine), a machine that translates any quantum λ-term285

into a circuit in QC. By post-processing this circuit as shown at the end of Section 4, we286

can thus obtain a standard quantum circuit. We define the machine in two steps: we first287

introduce a machine QCSIAM0 for the if-then-else free fragment of λQ; then we introduce288

the full machine, whose execution requires to make several runs of the QCSIAM0.289

5.1 The If-Then-Else-Free Machine290

The QCSIAM0 is a token machine, in the style of Girard’s geometry of interaction [20, 19, 13, 4].291

The idea is that, starting from a type derivation π in λQ, we will let a finite set of tokens292

Anonymous author(s) 9

move through π, following the occurrences of base types bit or qbit. Each token starts from293

a negative occurrence of some base type in π, corresponding to an input, and eventually294

reaches a positive occurrence of some base type, corresponding to an output. As they travel295

along the derivation, the tokens capture the underlying circuit of the λQ-term. At each step296

of the execution of the QCSIAM0, each token lies in a position inside π, corresponding to an297

occurrence of some base type B in some type judgement occurring in π. To be more precise,298

let us first introduce the notion of position within a type A. Any occurrence of some base299

type B in a type A is determined by a unique occurrence context C, corresponding intuitively300

to a type containing a unique occurrence of the hole [−], so that A = C[B]. Occurrence301

contexts are defined by:302

C ::= [−] | C⊸ A | A⊸ C | C⊗A | A⊗ C303

The position is called positive or negative depending on whether C belongs to the positive or304

negative contexts, defined as follows:305

P ::= [−] | N ⊸ A | A⊸ P | P ⊗A | A⊗ P306

N ::= P ⊸ A | A⊸ N | N ⊗A | A⊗N307
308

A position within a judgement Γ ⊢ A is either a position in A or a position in some type309

B occurring in Γ. If the position is within A, then it is positive (resp. negative) precisely310

when it is positive (resp. negative) as a position within A; if the position is within B, then it311

is positive (resp. negative) when it is negative (resp. positive) as a position within B. Finally,312

a position within a type derivation π is a position within some judgement occurring in π, and313

its polarity corresponds to its polarity as a position within the judgement.314

We can now define tokens:315

▶ Definition 5 (Token). A token in a type derivation π is a pair (l, σ) where l ∈ L is a label316

and σ is a position in π.317

Given a derivation π : Γ ⊢M : A, three sets of tokens (which are unique up to relabeling)318

will play an important role:319

the set of tokens in the negative positions of the conclusion Γ ⊢ A, noted Π−
π ;320

the set of tokens in the positive positions of the conclusion Γ ⊢ A, noted Π+
π ;321

the set of tokens in the positions of axioms ⊢ tt, ff : bit, noted Πbit
π .322

Intuitively, the tokens Π−
π will correspond to the inputs of the circuit, while the tokens Π+

π323

will correspond to the outputs. The tokens Πbit
π will also be important for the initialization324

of the machine. We will indicate as ∆−
π (resp. ∆+

π , ∆bit
π) the circuit environments formed by325

labels and base types of the tokens in Π−
π (resp. Π+

π , Πbit
π).326

The machine QCSIAM0 is actually a multitoken machine. This means that many tokens327

move inside π. During the execution, their paths will produce a circuit. A configuration of328

QCSIAM0 is given by the positions of the tokens together with the circuit produced so far.329

More precisely, a configuration C is a tuple (π,M, C) where:330

π : Γ ⊢M : A is a type derivation of λQ;331

M is a set of tokens;332

∆−
π ▷ C ▷∆M is a circuit of QC with inputs the negative positions in the conclusion of333

π and outputs ∆M corresponding to the base types in the positions of the tokens M.334

In a run of the QCSIAM0 the tokens move from the positions Π−
π and eventually reach335

the positive positions Π+
π , hence producing a circuit ∆−

π ▷ C ▷ ∆+
π . More precisely, a336

10 The Geometry of Quantum Compilation

In the initial con-
figuration all tokens
point upwards to
negative positions
in the conclusion
of π. The cir-
cuit only contains
boolean entries for
the axioms ⊢ tt, ff :
bit in π.

Γ ⊢ M : A

π

↑ ↑
initial state final state

⇝∗ Γ ⊢ M : A
↓↓

C
In the final config-
uration all tokens
point downwards to
positive positions in
the conclusion of
π. A circuit C has
been produced, with
output wires corres-
ponding to the pos-
itive tokens.

Figure 5 Execution of the quantum circuit token machine.

x : A1 ⊢ x : A2 x : A1 ⊢ x : A2

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ M : A ⊗ B ∆, x : A, y : B ⊢ N : C

Γ, ∆ ⊢ let (x, y) = M in N : C

Γ ⊢ t1 : A ∆ ⊢ t2 : B

Γ, ∆ ⊢ ⟨t1, t2⟩ : A ⊗ B
⊗

Γ ⊢ t1 : A ∆ ⊢ t2 : B

Γ, ∆ ⊢ ⟨t1, t2⟩ : A ⊗ B
⊗

Γ ⊢ t1 : A ∆ ⊢ t2 : B

Γ, ∆ ⊢ ⟨t1, t2⟩ : A ⊗ B
⊗

Γ ⊢ t1 : A ∆ ⊢ t2 : B

Γ, ∆ ⊢ ⟨t1, t2⟩ : A ⊗ B
⊗

Γ ⊢ t1 : A ∆ ⊢ t2 : B

Γ, ∆ ⊢ ⟨t1, t2⟩ : A ⊗ B
⊗

Γ ⊢ t1 : A ∆ ⊢ t2 : B

Γ, ∆ ⊢ ⟨t1, t2⟩ : A ⊗ B
⊗

Γ ⊢ t1 : A ∆ ⊢ t2 : B

Γ, ∆ ⊢ ⟨t1, t2⟩ : A ⊗ B
⊗

Γ ⊢ t1 : A ∆ ⊢ t2 : B

Γ, ∆ ⊢ ⟨t1, t2⟩ : A ⊗ B
⊗

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B

Γ ⊢ M : A ⊸ B ∆ ⊢ N : A

Γ, ∆ ⊢ MN : B

Γ ⊢ M : A ⊸ B ∆ ⊢ N : A

Γ, ∆ ⊢ MN : B

Γ ⊢ M : A ⊸ B ∆ ⊢ N : A

Γ, ∆ ⊢ MN : B

Γ ⊢ M : A ⊸ B ∆ ⊢ N : A

Γ, ∆ ⊢ MN : B

Γ ⊢ M : A ⊸ B ∆ ⊢ N : A

Γ, ∆ ⊢ MN : B

Γ ⊢ M : A ⊸ B ∆ ⊢ N : A

Γ, ∆ ⊢ MN : B

Γ ⊢ M : A ⊸ B ∆ ⊢ N : A

Γ, ∆ ⊢ MN : B

Γ ⊢ M : A ⊸ B ∆ ⊢ N : A

Γ, ∆ ⊢ MN : B

(a) Structural rules.

⊢ U : B1 ⊗ · · · ⊗ Bn ⊸ Bn+1 ⊗ · · · ⊗ B2n↑ . . . ↑
C

⇝ ⊢ U : B1 ⊗ · · · ⊗ Bn ⊸ Bn+1 ⊗ · · · ⊗ B2n

↓. . .↓
U

. . .

C

. . .

(b) Circuit rule.

Γ1 ⊢ M : bit ∆1 ⊢ N : A1 ∆2 ⊢ P : A2

Γ2, ∆3 ⊢ if M then N else P : A3

C
↑ ↑ ↑

C1
↓ ↓

C2
↓ ↓

C3
↓ ↓

⇝
Γ1 ⊢ M : bit ∆1 ⊢ N : A1 ∆2 ⊢ P : A2

Γ2, ∆3 ⊢ if M then N else P : A3

C

if C1 then C2 else C3

↓ ↓ ↓

(c) If-then-else rule.

Figure 6 Informal description of the rules of QCSIAM.

configuration C = (π,M,∆−
π ▷C ▷∆M) is initial when M = Π−

π ∪Πbit
π , ∆M = ∆−

π ∪∆bit
π337

and the circuit C is formed by all bit-gates corresponding to the axioms ⊢ tt, ff : bit in π338

tensored with identities on all other wires. Instead, a configuration C = (π,M, C) is final339

when M = Π+
π . This is illustrated in Figure 5, where the arrows pointing upwards describe340

token in negative positions, which move upwards in the derivation, while the arrows pointing341

downwards describe token in positive positions, which move downwards.342

▶ Remark 6. The situation we are interested in is that of a derivation π : Γ ⊢M : A where343

the types in Γ and A are first-order, that is, do not contain the linear arrow ⊸. In this344

case the initial positions coincide with the base types in Γ, and the final positions coincide345

with the base types in A. We call this a circuit typing. Observe that a circuit typing is346

possibly the type of a QC-term. The token machine will then produce a circuit
⊗

Γ▷C ▷A.347

Also observe that in a circuit typing the types that do not occur in the conclusion of the348

derivation may still contain linear arrows.349

The token dynamics are described by two kinds of rules. In the structural rules, see350

Anonymous author(s) 11

Figure 6a, one of the tokens moves upwards or downwards across the type derivation, while351

the circuit is left unchanged. These rules are as in standard GoI interpretations of the352

linear λ-calculus. Notice that there is no rule for tt and ff, this is because their rules (the353

initialization of a token) is already taken care of when we initialize the token machine for354

the first time. Instead, in the circuit rule, illustrated in Figure 6b, the tokens move in a355

synchronized way: after all necessary tokens reach the negative occurrences of B1, . . . ,Bn,356

all such tokens move onto the positive occurrences Bn+1, . . . ,B2n; when this happens, the357

gate U on the corresponding wires is composed with the circuit C constructed so far, while358

keeping the other wires unchanged.359

▶ Example 7. Consider the term M = x : qbit, y : qbit ⊢ CNOT(Hx, y) : qbit ⊗ qbit.360

We illustrate the run of the token machine over its type derivation in Fig. 7. If we replace361

the two variables x, y by new ff one can see that the produced circuit coincides with the one362

from Example 3 (cf. Figure 2).

⊢ CNOT : (qbit ⊗ qbit) ⊸ qbit ⊗ qbit

⊢ H : qbit ⊸ qbit x : qbit ⊢ x : qbit

x : qbit ⊢ H x : qbit y : qbit ⊢ y : qbit

x : qbit, y : qbit ⊢ (H x, y) : qbit ⊗ qbit

x : qbit, y : qbit ⊢ CNOT(H x, y) : qbit ⊗ qbit

H

CNOT

Figure 7 Example of execution of the token machine without if-then-else.
363

The result below shows that the QCSIAM0 reaches a final configuration in linear time.364

▶ Proposition 8 (Termination of the QCSIAM0). For any derivation π : Γ ⊢ M : A where365

M is if-then-else-free, any run of the QCSIAM0 reaches a final configuration in O(|π|) steps,366

producing a circuit ∆−
π ▷ C ▷∆+

π .367

Proof. This can be proved by a standard GoI argument, cf. [21]. The fundamental observation368

is that the paths of any single token is always acyclic, that is, it never visits the same position369

twice. Since all paths are thus necessarily finite, and may only terminate in a final position370

(by inspection of the rules), all tokens eventually reach a final position after any available371

position has been visited exactly once. ◀372

5.2 The Full Machine373

We now introduce the full machine, also accounting for the if-then-else operator. The idea is374

to let multiple QCSIAM0 interact in a hierarchical way: suppose that, during the run of a375

machine m, the tokens saturate, moving upwards, the negative positions in some judgement376

J = Γ ⊢ if M then N else P : A; three new machines are then launched, corresponding to377

the type derivations of the subterms M,N,P ; once the tokens of the three machines have378

reached their final positions, producing three circuits C1, C2, C3, the machine m merges379

these circuits to produce the controlled circuit if C1 then C2 else C3, and moves its tokens380

towards the positive positions in J . Observe that, with this architecture, the machine m381

remains stuck until the other three machines have reached a final position. We will actually382

show that m may only get stuck for a finite amount of time, and that the whole hierarchical383

execution always terminates in linear time.384

The idea sketched above is at work in the rule for the if-then-else, illustrated in Fig. 6c385

and discussed in the example below.386

12 The Geometry of Quantum Compilation

⊢ meas : qbit⊸ bit

⊢ H : qbit⊸ qbit x : qbit ⊢ x : qbit

x : qbit ⊢ Hx : qbit

x : qbit ⊢ meas(Hx) : bit y : qbit ⊢M : qbit y : qbit ⊢ N : qbit

x : qbit, y : qbit ⊢ if meas(Hx) then M else N : qbit

(a) Phase 1: the tokens saturate the negative positions of the if-then-else judgement.

⊢ meas : qbit⊸ bit

⊢ H : qbit⊸ qbit x : qbit ⊢ x : qbit

x : qbit ⊢ Hx : qbit

x : qbit ⊢ meas(Hx) : bit y : qbit ⊢M : qbit y : qbit ⊢ N : qbit

x : qbit, y : qbit ⊢ if meas(Hx) then M else N : qbit

H
meas

C1 C2

(b) Phase 2: the machines for the sub-terms are executed until termination.

x : qbit, y : qbit ⊢ if meas(Hx) then M else N : qbit

if meas H then C1 else C2

(c) Phase 3: the three circuits are merged. The tokens can now saturate the positive positions of the
if-then-else judgement.

Figure 8 Three phases of the execution of an if-then-else rule.

▶ Example 9. Let x : qbit ⊢ M,N : qbit be two terms and consider the term T =387

if P then M else N , where P = meas(Hx), corresponding to a fair flip coin. The execution388

of the token machine over T works in three phases, illustrated in Figure 8.389

The following result shows that any run of the QCSIAM terminates in linear time on a390

final configuration:391

▶ Theorem 10. For any derivation π : Γ ⊢M : A, any run of the QCSIAM reaches a final392

configuration in O(|π|) steps, producing a circuit ∆−
π ▷ C ▷∆+

π .393

Proof. We argue by induction on the maximum number κ(M) of nested occurrences of394

if-then-else in M . If κ(M) = 0, then M is if-then-else-free, so we conclude by Proposition 8.395

Otherwise, let us first show that the machine never gets stuck: if the tokens reach an396

if-then-else if N then P else Q, the corresponding three sub-derivations must be such that397

κ(N), κ(P), κ(Q) < κ(N); by induction hypothesis, then, the three machines terminate in a398

final configuration, so that the if-then-else rule can be applied to move the tokens away from399

if N then P else Q. Now one can argue for the termination of the machine in a similar400

way to the proof of Proposition 8, since all paths are necessarily finite. ◀401

6 Soundness of the Quantum Circuit Token Machine402

In this section we prove that the QCSIAM is sound with respect to the underlying operational403

semantics of λQ , that is, that the circuits produced by the machine perfectly match the404

quantum protocols described by the corresponding λQ-terms.405

The situation we are interested in is the one in which we are given a circuit typing406

Γ ⊢ M : A for some λQ-term M . Let us first highlight an important difference between407

λQ and the QCSIAM. On the one hand, the evaluation of λQ-terms relies on the choice408

of a quantum register (a closure) and is intrinsically probabilistic, due to the measure409

Anonymous author(s) 13

operator; in other words, the different evaluations of a closure [Q,L,M] produce a distribution410

evalλ[Q,L,M] of quantum states. On the other hand, the execution of the token machine411

does not rely on a quantum register and is entirely deterministic: the measure operator412

results in the introduction in the circuit of a measure gate that is not evaluated at compile413

time. In particular, the evaluation of the QCSIAM over M does not produce a distribution414

of quantum states, but a quantum circuit CM .415

The soundness of the token machine must thus be formulated as a result relating the416

association Q 7→ evalλ[Q,L,M] between quantum states and distributions of quantum states417

(i.e. mixed states) produced by the evaluation of the quantum closure, with the action of418

the quantum circuit CM (or rather, of its CPM-interpretation) over mixed states. For any419

finite distribution of quantum states µ =
∑k

i=1 piQi over n qubits, and L = [x1, . . . , xn], let420

state(µ,L) ∈ JqbitnK indicate the associated mixed state. This leads to the following:421

▶ Theorem 11. Let π : Γ ⊢ M : A be a circuit typing derivation and suppose that the422

QCSIAM produces, over π, the final configuration (π,Π−
π ,∆−

π ▷ CM ▷∆+
π). Then, for any423

quantum closure [Q,L,M], JCM K(state(Q,L)) = state(evalλ[Q,L,M]).424

We provide a sketch of the proof of Theorem 11. The fundamental ingredient is the425

introduction of yet another token machine, called the QMSIAM (Quantum Memory-based426

Synchronous Interaction Abstract Machine) whose execution is closer to the evaluation of427

λQ-terms, being probabilistic. This machine is essentially the same as the machine MSIAM428

of [32, 11]. Also in the QMSIAM we have multiple tokens that move from initial positions to429

final positions inside the type derivation of M ; however, the machine does not produce a430

circuit; instead, the machine has access to a quantum register [Q,L] that is updated during431

execution. This quantum register contains the current states of the qubits and bits in the432

positions occupied by the tokens (for uniformity, we can suppose that the states b ∈ {0, 1}433

of the bit are registered as the corresponding quantum states |b⟩). A configuration of the434

QMSIAM is thus of the form (π,M, [Q,L]) where π,M are as in QCSIAM, while [Q,L] is a435

quantum register.436

The structural rules of the QMSIAM are as for the QCSIAM: a single token moves and the437

quantum register is not updated; instead, the behavior of the QMSIAM differs when the tokens438

travel through a quantum gate U ∈ Q or through an if-then-else. In the first case, illustrated439

in Figure 9a, the register is updated by applying the gate U to the quantum state. Observe440

that, when U = meas, the update is inherently probabilistic: the machine actually performs a441

measurement on its quantum register. In the case of a term Γ,∆ ⊢ if N then P0 else P1 : A,442

illustrated in Figure 9b, we have two kinds of rules: firstly, we have structural rules allowing443

tokens to move upwards through the derivation of N ; in this way a token may end up in444

the positive position N : bit; when this happens, the register will contain a value b ∈ {0, 1}445

(actually, the qubit |b⟩ since we encode bits in the quantum register Q). We then have a446

second class of rules that allows a token in a negative position in either ∆ or A to move447

upwards within the sub-derivation of Pb: this may only happen once the Boolean b has been448

determined. The two rules are illustrated in Figure 9. Observe that, in any execution, only449

one among the sub-derivations of P0 and P1 are actually visited by the tokens. Which one450

may depend on the execution itself (as the Boolean b produced might depend on previous451

measurements).452

In an initial state for the QMSIAM one consider a quantum register [Q,L]. By con-453

sidering all possible executions of the machine over [Q,L], we obtain a finite distribution454

evalMSIAM[Q,L,M] =
∑k

i=1 piQi of quantum states produced in output by the machine.455

Via the very similar MSIAM machine, it is not difficult to show that the distribution456

14 The Geometry of Quantum Compilation

⊢ U : B1 ⊗ · · · ⊗ Bn ⊸ Bn+1 ⊗ · · · ⊗ B2n

state |ϕ⟩
↑ . . . ↑

⇝ ⊢ U : B1 ⊗ · · · ⊗ Bn ⊸ Bn+1 ⊗ · · · ⊗ B2n

↓. . .↓
state U |ϕ⟩

(a) Circuit rule.

Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A
Γ, ∆ ⊢ if M then N else P : A

Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A
Γ, ∆ ⊢ if M then N else P : A

Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A
Γ, ∆ ⊢ if M then N else P : A

0
Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A

Γ, ∆ ⊢ if M then N else P : A

0
Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A

Γ, ∆ ⊢ if M then N else P : A

0
Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A

Γ, ∆ ⊢ if M then N else P : A

0

Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A
Γ, ∆ ⊢ if M then N else P : A

1
Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A

Γ, ∆ ⊢ if M then N else P : A

1
Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A

Γ, ∆ ⊢ if M then N else P : A

1
Γ ⊢ M : bit ∆ ⊢ N : A ∆ ⊢ P : A

Γ, ∆ ⊢ if M then N else P : A

1

(b) If-then-else rules.

Figure 9 Rules of QMSIAM.

evalMSIAM[Q,L,M] perfectly matches the distribution evalλ[Q,L,M] produced by the λQ-457

evaluation of [Q,L,M]. In this way, we are reduced to the problem of defining a simulation458

between the QMSIAM and the QCSIAM. This is provided by the following lemma.459

Let C = (π,M,∆1 ▷ C ▷ ∆2) be a configuration of the QCSIAM and µ =
∑k

i=1 piCi,460

where Ci = (πi,Mi, [Qi, Li]) be a distribution of configurations for the QMSIAM. For all461

quantum state [Q,L], let us write µ S[Q,L] C when µ and C are related as follows:462

in both C and all Ci the tokens are in the same positions (i.e. M =Mi),463

the application of the completely positive map JCK to the register [Q,L] produces the464

same distribution of quantum states as µ, that is, JCK(state(Q,L)) = state(
∑

i piQi, L).465

We then have the following result:466

▶ Lemma 12 (the QMSIAM simulates the QCSIAM). Let C, C′ be configurations of the QCSIAM467

and µ be a distribution of configurations for the QMSIAM. If µ S[Q,L] C and C → C′ then468

there exists a distribution µ′ such that µ′ S[Q,L] C′ and such that multiple parallel executions469

of the QMSIAM lead from µ to µ′.470

From the simulation result above, one can easily obtain a proof of Theorem 11 by induction471

on a (always terminating) execution of the QCSIAM.472

7 Extending the Type System473

In this section, we informally describe some additional results about the compilation scheme474

we introduced and proved correct in this paper.475

On the one hand, it should certainly be noted that the type system considered in this476

work is purely linear, not allowing for any form of duplication. Furthermore, the types are477

multiplicative, namely ⊗ and ⊸, and additives are present in disguise only through the type478

bit. Considering a more general type system with additive and exponential connectives can479

be done, but requires great care. On the one hand, it is in fact well known that Girard’s480

Geometry of Interaction is robust enough to allow for a faithful interpretation of additives481

and exponentials [21, 33], even in the presence of multiple tokens [11]. On the other hand,482

the way conditionals are managed here and the special role they have means that the typing483

of both branches of any conditional needs to be restricted. Any such type should uniquely484

determine the (finite) number and the shape of the tokens entering and exiting the conditional.485

This of course cannot hold in presence of additives, and requires exponentials to be bounded,486

in the style of graded comonads [22]. Similarly, a feature that can be added to our type487

system without too much trouble is a form of structural recursion or iteration. However, this488

Anonymous author(s) 15

would require the introduction of an inductive type, such as that of natural numbers. The489

question then becomes the following: should such a type be treated similarly to bit, that is,490

does it indicate the value that can travel on a wire of the constructed circuit, or must its491

value be known at compile time? In the second case, which we think corresponds to the use492

of natural numbers in quantum algorithms, it is clear that such an inductive type should493

itself not occur in the type of the branches of a conditional construct. Summing up, while for494

the sake of simplicity we have considered a very simple type system here, this does not mean495

that the approach cannot be adapted to more expressive type systems. The only proviso496

is that of taking good care of how conditionals can be typed, in particular guaranteeing497

finiteness and determinacy.498

8 Related Work499

The literature offers an extensive body of work on quantum compilation, including optimiza-500

tion and so-called transpilation techniques. Techniques specifically tailored to the compilation501

of higher-order functional languages to quantum circuits are much sparser. One notable502

contribution in this direction is the language Qunity [44], which offers a higher-order quantum503

programming language with classical control together with a full compilation scheme towards504

OpenQASM [10]. However, Qunity does not feature a rewriting system and hence it cannot505

be executed. This greatly limits the higher-level reasoning that can be done on this language.506

Girard’s Geometry of Interaction [20, 19] has already been applied to quantum computing507

[27, 11]. In all the aforementioned work, however, the underlying machine follows the508

QRAM model, i.e., the token(s) perform some classical computation while moving around509

the program, from time to time interacting with a quantum register. The token trajectories510

are probabilistic, and provide an alternative way to fully execute the term on a quantum511

input. By contrast, our approach is fully deterministic, and, instead of executing the term, it512

produces a (yet to be executed) quantum circuit, thus anticipating the quantum work.513

Quantum λ-calculi come in many flavours [41, 40, 2, 12], and semantics frameworks514

modelling them can themselves be built following distinct lines [40, 37, 7]. One should also515

mention the extensive body of literature on quantum circuit description languages [38, 25].516

The kind of challenges we faced here when compiling conditionals are in fact similar to those517

encountered when endowing Quipper with so-called dynamic lifting [34, 8].518

9 Conclusion519

We introduced a compilation scheme turning any term in a linear quantum λ-calculus into520

an equivalent quantum circuit. The translation is proved correct, and is shown not to521

give rise to any exponential blowup. Topics for future work include the generalization of522

the introduced compilation procedure to more expressive calculi and its implementation in523

concrete programming languages, e.g., Linear Haskell.524

References525

1 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The machinery of interaction. In526

Proceedings of the 22nd International Symposium on Principles and Practice of Declarative527

Programming, PPDP ’20, New York, NY, USA, 2020. Association for Computing Machinery.528

doi:10.1145/3414080.3414108.529

2 Thorsten Altenkirch and Jonathan Grattage. A functional quantum programming language. In530

20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago,531

https://doi.org/10.1145/3414080.3414108

16 The Geometry of Quantum Compilation

IL, USA, Proceedings, pages 249–258. IEEE Computer Society, 2005. doi:10.1109/LICS.2005.532

1.533

3 Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. The vectorial lambda-calculus.534

Information and Computation, 254:105–139, June 2017. URL: http://dx.doi.org/10.1016/535

j.ic.2017.04.001, doi:10.1016/j.ic.2017.04.001.536

4 Andrea Asperti and Cosimo Laneve. Paths, computations and labels in the λ-calculus.537

Theoretical Computer Science, 142(2):277–297, 1995.538

5 Anonymous Authors. The geometry of quantum compilation. (supplementary material).539

6 Kostia Chardonnet. Towards a Curry-Howard Correspondence for Quantum Computa-540

tion. Theses, Université Paris-Saclay, January 2023. URL: https://theses.hal.science/541

tel-03959403.542

7 Pierre Clairambault and Marc de Visme. Full abstraction for the quantum lambda-calculus.543

Proc. ACM Program. Lang., 4(POPL), December 2019. doi:10.1145/3371131.544

8 Andrea Colledan and Ugo Dal Lago. On Dynamic Lifting and Effect Typing in Circuit545

Description Languages. In Delia Kesner and Pierre-Marie Pédrot, editors, 28th International546

Conference on Types for Proofs and Programs (TYPES 2022), volume 269 of Leibniz Interna-547

tional Proceedings in Informatics (LIPIcs), pages 3:1–3:21, Dagstuhl, Germany, 2023. Schloss548

Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/549

document/10.4230/LIPIcs.TYPES.2022.3, doi:10.4230/LIPIcs.TYPES.2022.3.550

9 Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S. Bishop,551

Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M. Gambetta, and552

Blake R. Johnson. Openqasm 3: A broader and deeper quantum assembly language. ACM553

Transactions on Quantum Computing, 3(3):1–50, September 2022. URL: http://dx.doi.org/554

10.1145/3505636, doi:10.1145/3505636.555

10 Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open quantum556

assembly language, 2017. URL: https://arxiv.org/abs/1707.03429, arXiv:1707.03429.557

11 Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. The geometry of558

parallelism: classical, probabilistic, and quantum effects. SIGPLAN Not., 52(1):833–845, jan559

2017. doi:10.1145/3093333.3009859.560

12 Ugo Dal Lago, Andrea Masini, and Margherita Zorzi. On a measurement-free quantum561

lambda calculus with classical control. Math. Struct. Comput. Sci., 19(2):297–335, 2009.562

doi:10.1017/S096012950800741X.563

13 Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal λ-machines. Theor-564

etical Computer Science, 227(1-2):79–97, 1999.565

14 Alejandro Díaz-Caro and Gilles Dowek. A linear linear lambda-calculus. Mathematical566

Structures in Computer Science, pages 1–35, May 2024. URL: http://dx.doi.org/10.1017/567

S0960129524000197, doi:10.1017/s0960129524000197.568

15 Yuan Feng and Mingsheng Ying. Quantum hoare logic with classical variables. ACM569

Transactions on Quantum Computing, 2(4):1–43, 2021.570

16 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. Proto-quipper with dynamic lifting.571

Proc. ACM Program. Lang., 7(POPL), January 2023. doi:10.1145/3571204.572

17 Dan R. Ghica. Geometry of synthesis: a structured approach to vlsi design. SIGPLAN Not.,573

42(1):363–375, jan 2007. doi:10.1145/1190215.1190269.574

18 Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.575

19 Jean-Yves Girard. Geometry of interaction I: interpretation of System F. In Studies in Logic576

and the Foundations of Mathematics, volume 127, pages 221–260. Elsevier, 1989.577

20 Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics, 92(69-108):6,578

1989.579

21 Jean-Yves Girard. Geometry of interaction iii: accommodating the additives. In Proceedings of580

the Workshop on Advances in Linear Logic, pages 329–389, USA, 1995. Cambridge University581

Press.582

https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1109/LICS.2005.1
http://dx.doi.org/10.1016/j.ic.2017.04.001
http://dx.doi.org/10.1016/j.ic.2017.04.001
http://dx.doi.org/10.1016/j.ic.2017.04.001
https://doi.org/10.1016/j.ic.2017.04.001
https://theses.hal.science/tel-03959403
https://theses.hal.science/tel-03959403
https://theses.hal.science/tel-03959403
https://doi.org/10.1145/3371131
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.3
https://doi.org/10.4230/LIPIcs.TYPES.2022.3
http://dx.doi.org/10.1145/3505636
http://dx.doi.org/10.1145/3505636
http://dx.doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://arxiv.org/abs/1707.03429
http://arxiv.org/abs/1707.03429
https://doi.org/10.1145/3093333.3009859
https://doi.org/10.1017/S096012950800741X
http://dx.doi.org/10.1017/S0960129524000197
http://dx.doi.org/10.1017/S0960129524000197
http://dx.doi.org/10.1017/S0960129524000197
https://doi.org/10.1017/s0960129524000197
https://doi.org/10.1145/3571204
https://doi.org/10.1145/1190215.1190269

Anonymous author(s) 17

22 Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: a modular583

approach to polynomial-time computability. Theoretical Computer Science, 97(1):1–66, 1992.584

doi:https://doi.org/10.1016/0304-3975(92)90386-T.585

23 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît586

Valiron. An Introduction to Quantum Programming in Quipper, pages 110–124. Springer587

Berlin Heidelberg, 2013. URL: http://dx.doi.org/10.1007/978-3-642-38986-3_10, doi:588

10.1007/978-3-642-38986-3_10.589

24 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît590

Valiron. Quipper: a scalable quantum programming language. ACM SIGPLAN Notices,591

48(6):333–342, June 2013. URL: http://dx.doi.org/10.1145/2499370.2462177, doi:10.592

1145/2499370.2462177.593

25 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît594

Valiron. Quipper: a scalable quantum programming language. In Proceedings of the 34th595

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI596

’13, pages 333–342, New York, NY, USA, 2013. Association for Computing Machinery. doi:597

10.1145/2491956.2462177.598

26 Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of599

the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.600

27 Ichiro Hasuo and Naohiko Hoshino. Semantics of higher-order quantum computation via601

geometry of interaction. Ann. Pure Appl. Log., 168(2):404–469, 2017. doi:10.1016/J.APAL.602

2016.10.010.603

28 Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman,604

Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R.605

Johnson, and Jay M. Gambetta. Quantum computing with Qiskit, 2024. arXiv:2405.08810,606

doi:10.48550/arXiv.2405.08810.607

29 M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris,608

A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi,609

E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva,610

C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose. Quantum annealing with611

manufactured spins. Nature, 473(7346):194–198, 2011. doi:10.1038/nature10012.612

30 A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30,613

2003. doi:https://doi.org/10.1016/S0003-4916(02)00018-0.614

31 E Knill. Conventions for quantum pseudocode. Technical report, 6 1996. URL: https:615

//www.osti.gov/biblio/366453, doi:10.2172/366453.616

32 Ugo Dal Lago and Margherita Zorzi. Wave-style token machines and quantum lambda calculi617

(long version), 2013. URL: https://arxiv.org/abs/1307.0550, arXiv:1307.0550.618

33 Olivier Laurent. A token machine for full geometry of interaction (extended abstract). In619

Samson Abramsky, editor, Typed Lambda Calculi and Applications, pages 283–297, Berlin,620

Heidelberg, 2001. Springer Berlin Heidelberg.621

34 Dongho Lee, Valentin Perrelle, Benoît Valiron, and Zhaowei Xu. Concrete categorical model622

of a quantum circuit description language with measurement. In 41st IARCS Annual Con-623

ference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS624

2021). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. URL: https://drops.625

dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.51, doi:10.4230/LIPICS.626

FSTTCS.2021.51.627

35 Louis Lemonnier. The semantics of effects: Centrality, quantum control and reversible recursion,628

2024. URL: https://arxiv.org/abs/2406.07216, arXiv:2406.07216.629

36 Ian Mackie. The geometry of interaction machine. In Proceedings of the 22nd ACM SIGPLAN-630

SIGACT Symposium on Principles of Programming Languages, POPL ’95, pages 198–208, New631

York, NY, USA, 1995. Association for Computing Machinery. doi:10.1145/199448.199483.632

https://doi.org/https://doi.org/10.1016/0304-3975(92)90386-T
http://dx.doi.org/10.1007/978-3-642-38986-3_10
https://doi.org/10.1007/978-3-642-38986-3_10
https://doi.org/10.1007/978-3-642-38986-3_10
https://doi.org/10.1007/978-3-642-38986-3_10
http://dx.doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1016/J.APAL.2016.10.010
https://doi.org/10.1016/J.APAL.2016.10.010
https://doi.org/10.1016/J.APAL.2016.10.010
http://arxiv.org/abs/2405.08810
https://doi.org/10.48550/arXiv.2405.08810
https://doi.org/10.1038/nature10012
https://doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
https://www.osti.gov/biblio/366453
https://www.osti.gov/biblio/366453
https://www.osti.gov/biblio/366453
https://doi.org/10.2172/366453
https://arxiv.org/abs/1307.0550
http://arxiv.org/abs/1307.0550
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.51
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.51
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.51
https://doi.org/10.4230/LIPICS.FSTTCS.2021.51
https://doi.org/10.4230/LIPICS.FSTTCS.2021.51
https://doi.org/10.4230/LIPICS.FSTTCS.2021.51
https://arxiv.org/abs/2406.07216
http://arxiv.org/abs/2406.07216
https://doi.org/10.1145/199448.199483

18 The Geometry of Quantum Compilation

37 Michele Pagani, Peter Selinger, and Benoît Valiron. Applying quantitative semantics to633

higher-order quantum computing. SIGPLAN Not., 49(1):647–658, January 2014. doi:10.634

1145/2578855.2535879.635

38 Jennifer Paykin, Robert Rand, and Steve Zdancewic. Qwire: a core language for quantum636

circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming637

Languages, POPL ’17, pages 846–858, New York, NY, USA, 2017. Association for Computing638

Machinery. doi:10.1145/3009837.3009894.639

39 Peter Selinger. Towards a quantum programming language. Mathematical. Structures in640

Comp. Sci., 14(4):527–586, aug 2004. doi:10.1017/S0960129504004256.641

40 Peter Selinger and Benoît Valiron. On a fully abstract model for a quantum linear functional642

language. Electronic Notes in Theoretical Computer Science, 210:123–137, 2008.643

41 Peter Selinger and Benoît Valiron. Quantum Lambda Calculus, pages 135–172. Cambridge644

University Press, 2009.645

42 Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on646

a quantum computer. SIAM review, 41(2):303–332, 1999.647

43 Google AI Quantum Team. Cirq Programming Language. https://quantumai.google/cirq,648

2018.649

44 Finn Voichick, Liyi Li, Robert Rand, and Michael Hicks. Qunity: A unified language for650

quantum and classical computing. Proceedings of the ACM on Programming Languages,651

7(POPL):921–951, 2023.652

https://doi.org/10.1145/2578855.2535879
https://doi.org/10.1145/2578855.2535879
https://doi.org/10.1145/2578855.2535879
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1017/S0960129504004256
https://quantumai.google/cirq

	1 Introduction
	2 A Bird's Eye View on the Problem
	3 Calculus
	4 Quantum Circuits
	4.1 Quantum Circuits with Classical Control Flow
	4.2 Eliminating Classical Control Flow

	5 The Quantum Circuit Token Machine
	5.1 The If-Then-Else-Free Machine
	5.2 The Full Machine

	6 Soundness of the Quantum Circuit Token Machine
	7 Extending the Type System
	8 Related Work
	9 Conclusion

