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Présentée et soutenue publiquement le 9 Janvier 2023,
devant un jury composé de :
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Abstract

In this thesis, we are interested in the development of a Curry-Howard correspondence for
quantum computing, allowing to represent quantum types and quantum control-flow. In
the standard model of Quantum Computation, a classical computer is linked to a quan-
tum coprocessor. The classical computer can then send instructions to allocate, update,
or read quantum registers. The programs executed by the coprocessor are represented
by a quantum circuit: a sequence of instructions that applies unitary operations to the
input quantum bits. While the model is universal, in the sense that it can represent
any unitary operations, it stays limited: it lacks of proper representation of non-causal
execution flow. Normally, to represent branching, one can use a type system featuring a
coproduct, allowing for the choice between two possible executions, but quantum circuits
only feature qubits and tensors thereof. On the other hand, types and strongly related
to logic via the Curry-Howard correspondence which states that types of programs cor-
respond to formulas and programs to proofs, while the program evaluation is matched
with the proof simplification. While this correspondence has been extended to multiple
setting in classical computer, it has yet to emerge in quantum computing.

To address those problems we follow two different approaches: the first one, through
the development of a linear and reversible programming language, capturing a subset of
quantum computing, along with a Curry-Howard correspondence with the logic µMALL.
The language comes in two versions: one representing exactly complete, reversible func-
tions while the other one can represent partial functions. Both version comes with an
expressivity result: in the former, one can capture the whole class of Primitive Recursive
Functions, while in the later any Turing Machine we show how to capture any Turing Ma-
chine. The second approach follows the development of token-based semantics, inspired
by Girard’s Geometry of Interaction, for graphical language for quantum computation.
In this approach, a token-based semantics was given for the ZX-Calculus: a graphical
language for quantum computation capable of representing any linear operators. We
show how the token-based semantics matches the denotational one. We extend the ZX-
Calculus with a coproduct and an explicit tensor in the development of the Many-Worlds
Calculus. This new languages comes with a token-based semantics and an equational
theory. We show how quantum control can be represented in this system. Finally, the
programming language is modified to be able to realize pure quantum computation and
the graphical language is then used as a denotational model for it.
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Résumé

Dans cette thèse, nous nous intéressons au développement d’une correspondance de
Curry-Howard pour l’informatique quantique, permettant de représenter des types quan-
tiques et le flot de contrôle quantique. Dans le modèle standard de l’informatique quan-
tique, un ordinateur classique est lié à un coprocesseur quantique. L’ordinateur classique
peut alors envoyer des instructions pour allouer, mettre à jour ou lire des registres quan-
tiques. Les programmes exécutés par le coprocesseur sont représentés par un circuit
quantique : une séquence d’instructions qui applique des opérations unitaires aux reg-
istres quantiques. Bien que le modèle soit universel, dans le sens où il peut représenter
n’importe quelle opérations unitaire, il reste limité : il lui manque une représentation
correcte du flot d’exécution non causal. Normalement, pour représenter le branchement,
on peut utiliser un système de type contenant un coproduit, permettant le choix entre
deux exécutions possibles, mais les circuits quantiques ne contiennent que des qubits
et leurs tenseurs. D’autre part, les types sont fortement liés à la logique à travers la
correspondance Curry-Howard qui stipule que les types de programmes correspondent
aux formules et les programmes aux preuves, tandis que l’évaluation du programme cor-
respond à la simplification de la preuve correspondante. Bien que cette correspondance
ait été étendue à des cas multiples en informatique classique, elle n’a pas encore émergée
dans l’informatique quantique.

Pour résoudre ces problèmes, nous suivons deux approches différentes : la première, par
le développement d’un langage de programmation linéaire et réversible, capturant un
sous-ensemble de l’informatique quantique, ainsi qu’une correspondance Curry-Howard
avec la logique µMALL. Le langage existe en deux versions : l’une représentant des fonc-
tions réversibles et totales, tandis que l’autre peut représenter des fonctions partielles.
Les deux versions sont accompagnées d’un résultat d’expressivité : dans la première,
nous pouvons capturer l’ensemble des fonctions primitive récursives, tandis que dans la
deuxième, nous montrons comment capturer n’importe quelle Machine de Turing. La
deuxième approche suit le développement d’une sémantique à base de jetons, inspirée
de la géométrie de l’interaction de Girard, pour des langages graphique pour le calcul
quantique. Dans cette approche, une sémantique à base de jetons a été donnée pour le
ZX-Calcul : un langage graphique pour l’informatique quantique capable de représenter
n’importe quel opérateur linéaire. Nous montrons comment cette nouvelle sémantique
correspond à la sémantique dénotationnelle standard. Nous étendons ensuite le ZX-
Calcul avec un coproduit et un tenseur explicite dans le développement du Many-Worlds
Calcul. Ce nouveau langage est accompagné sémantique à base de jetons et une théorie
équationnelle. Nous montrons comment le contrôle quantique peut être représenté dans
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ce système. Enfin, le langage de programmation est modifié dans le cas quantique pur
et nous utilisons le Many-Worlds Calculus comme un modèle dénotationnel pour ce
nouveau langage de programmation.
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Introduction

Quantum Computation. In quantum computing, one has access to a new kind
of data: quantum bits (qubits), which consists in superposition of the classical bits 0
and 1. The use of quantum bits has allowed for the development of new algorithms
enjoying an exponential speedup compared to their classical counter-part. The most
prominent examples being Grover’s algorithm, allowing to search for an element in a
list of n elements in O(

√
N) [Gro96] and its direct application in Shor’s algorithm,

allowing for decomposing a number into its prime factors exponentially faster than known
classical algorithms [Sho99]. These algorithms are written using the Quantum Memory
(QRAM) model. In this model, a classical computer is linked to a quantum coprocessor.
While the classical computer has access to the full expressiveness of types systems and
known programming methods, the quantum coprocessor is only able to execute quantum
circuits, the quantum counterparts of boolean circuits, on some input qubits. A quantum
circuit consists in a sequence of unitary operations (called gates) which update the states
of the input qubits, flowing from the input wires of the circuits, through the output wires,
traversing the gates as they move. Then, the result of the execution of the quantum
circuit is sent back to the classical computer after the measurement.

From a semantical perspective, the state of a quantum circuit consisting of n quantum
bits is a vector in a 2n-dimensional Hilbert space. A (pure) quantum circuit is a linear,
sequential description of elementary operations describing a linear, unitary map on the
state space.

On a formal aspect, quantum circuits have a very rigid structure, allowing for little ab-
stract reasoning on the execution of the circuit: most gates are matrices and in order
to prove any property, one has to realize matrices computation, although some for-
malisms mitigate this difficulty [Amy18]. Graphical languages for quantum computing
has been introduced as a way to solve this problem. Coming all the way from Feyman’s
diagrams [FH65], graphical languages are commonly used for representing quantum pro-
cesses. Whether directly based on quantum circuits [Gre+13; Dal17; PRZ17; Cha+] or
stemming from categorical analysis such as the ZX-calculus [CK17; CD11], these formal
languages are still tied to the quantum coprocessor model in the sense that the only
monoidal structure that can be applied to quantum information is the (multiplicative)
Kronecker product. Another approach for abstract reasoning on quantum programs
would be the development of typed quantum programming languages. In this setting,
types could help us reason about properties of quantum programs. Types systems have
been successfully used in classical computing to reason about programs, in particular
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through the Curry-Howard Correspondence [Cur34] which states that types of programs
correspond to formulas and programs to proofs, while the program evaluation is matched
with the proof simplification. This correspondence has been used to mirror first and
second-order logics with dependent-type systems [BC13; Ler09], separation logics with
memory-aware type systems [Rey02; Jun+17], resource-sensitive logics with differential
privacy [Gab+13], logics with monads with reasoning on side effects [Swa+16; Mai+19],
classical logic [Gri89], in the development of rich typed programming languages [Nor07;
OSG08]. Such a correspondence has yet to emerge in the quantum setting, even through
some progress has been made [DD22; DCM22; SVV18], albeit with limited type struc-
tures.

Quantum Control Flow. One peculiar feature of quantum computation is non-causal
execution paths. Indeed, the Janus-faced quantum computational paradigm features two
seemingly distinct notions of control structure. On the one hand, a quantum program
follows classical control: it is hosted on the conventional computer governing the co-
processor, and can therefore only enjoy loops, tests and other regular causally ordered
sequences of operations. On the other hand, the lab bench turns out to be more flexible
than the rigid coprocessor model, permitting more elaborate purely quantum computa-
tional constructs than what quantum circuits or ZX-calculus allow.

The archetypal example of a quantum computational behaviour hardly attainable within
quantum circuits or ZX-calculus is the Quantum Switch [Chi+13]. Consider two quan-
tum bits x and y and two unitary operations U and V acting on y. The problem consists
in generating the operation that performs UV on y if x is in state |0〉 and V U if it is in
state |1〉.

QSwitch(x, U, V ) =

{
U V if x = |0〉
V U if x = |1〉

But, as x can be in superposition, in general the operation is then:

(α |0〉+ β |1〉)⊗ |y〉 7→ α |0〉 ⊗ (UV |y〉) + β |1〉 ⊗ (V U |y〉).

It is a purely quantum test : not only can we have values in superposition (here, x) but
also execution orders. This is in sharp contrast with what happens within the standard
quantum coprocessor model. While this program has been shown to be impossible to
implement in a quantum circuit with only one instance of U and V [Chi+13], it is
nonetheless physically implementable [Abb+20].

While most quantum programming languages are still linked to the QRAM model and
features only classical tests and loops [Sin+22; Gre+13], computational models sup-
porting superposition of execution orders have been studied in the literature, such as
proposing a suitable extension of quantum circuits [CDP08; Por+17; VKB21; Wec+21].
These approaches typically aim at discussing the notion of quantum channel from a
quantum information theoretical standpoint.
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Figure 0.1.: Splits over coproduct and tensor

Quantum Types. Both the QRAM model and the ZX-Calculus only considered
tensors of qubits as the types of their input and output data. They do not natively
feature coproduct, which could be used for tests, nor richer types structures such as
inductive or coinductive types.

The presence of a coproduct could ease the representation of tests, allowing for dif-
ferent execution paths to be considered. This is the approach followed in the PBS-
Calculus [CP20], albeit the PBS-Calculus does not feature a tensor: their parallel com-
position corresponds to the superposition of positions of a single qubit, while in other
languages (such as the ZX-Calculus), the parallel composition corresponds to a tensor
of qubits.

Typed quantum programming languages featuring both a tensor and a coproduct have
been developed [SVV18; VRH22] albeit in these works, no relation with a formal proof
system has been established yet. Relating a pure quantum type system with a logical
system has been considered in [DD22] in the style of a natural deduction logic through
the use of a new connective � allowing for the superposition of data, with a studied
semantics for a fragment of the language, based on the category of S-semimodule, for
S a cancellative commutative semiring [DCM22]. However, their logic is limited to
the intuitionistic fragment of linear logic without tensors and the question of quantum
control is not discussed.

Graphical languages featuring both a tensor and a coproduct are based on the notion
of tapes, or sheets [Dun09; Mel14]. The coproduct is able to separate a tape in two,
making the two part impossible to communicate with one another until they are merged
back together, while the tensor is simply the pair of a data, as shown in Figure 0.1.
However, these formalisms are not inherently quantum: the splitting and merging of
tapes have to be done in a well-bracketed manners making it impossible to represent
quantum superposition. From a semantics point of view, pure quantum computation
with coproduct and tensors have been studied [DCM22; Cha+22], but it is not clear
about inductive types and recursion would fit in those settings and is, so far, the question
is left open.

Branching of execution paths can be used to determine whenever a program should ter-
minate or not. The notion of recursion and inductive types in pure quantum computing
is yet again lacking: in order to consider recursion, one must make sure that each step
of the computation is indeed reversible and that the recursive program is always well-
defined, as the whole operation has to be a unitary operation. In [SVV18] the authors
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develop a pure quantum programming language with the product and coproduct and the
inductive type of lists and with strong constraints ensuring termination and reversibility,
which opens the door to further generalization and the development of a proper logic.

Contributions. We try to answer the problem of finding a suitable computation
model for pure quantum computation with rich datatype, along with a Curry-Howard
correspondence. We offer two approaches:

• The first one, based on a pure quantum programming languages in the style of The-
seus [JS12; JS14; SVV18] where we present a linear and reversible programming
language with inductive types, together with a Curry-Howard correspondence with
the logic µMALL: linear logic with least and greatest fix points. While [SVV18]
extend the language to the quantum case, with the limited type of lists, we stay
in the purely classical case. The extension for generalized pure quantum inductive
type is left as future work.

• And then using graphical languages. First, we define a new semantics for the
ZX-Calculus, based on a token-machine inspired from Girard’s Geometry of Inter-
action, we show how this new semantics capture the usual denotational semantics
of the ZX-Calculus. Then, we develop a new graphical language in the style of
linear logic proof nets equipped with both a tensor, allowing for handling multiple
pieces of information together, and a coproduct, allowing for branching depending
on the given input. We develop a token-based semantics on this new language,
and then a denotational semantics with an equational theory that is sound and
complete.

Plan of the thesis. The thesis is organized as follows: Part I is focused on the
mathematical background needed for this thesis. It is split into two parts, Chapter 1
introduce the quantum-theorical background needed, while Chapter 3 introduce the
proof-theorical formalism of linear logic and µMALL. Then, Part II focus on my personal
contributions. In Chapter 4 we present the linear, reversible language based on pattern-
matching. The language features constraints forcing any well-typed function (called
iso) to be reversible, and hence an isomorphism. We then show (i) that any primitive
recursive function can be encoded as an iso of the language, (ii) how any iso represent a
proof-isomorphism in the logic µMALL, (iii) that by relaxing the constraints on the iso
to be able to consider partial maps, the language is Turing Complete. This chapter is a
first step towards pure quantum types and quantum control.

Chapter 5 is focused around defining a new kind of semantics for the ZX-Calculus : a
graphical language for quantum computation. The semantics is inspired from the token-
based geometry of interaction of linear logic, in which tokens move around the graph,
capturing the computational content of the graph. We show (i) how the token machine,
under some invariants, exactly captures the denotational semantics of the ZX-Diagram,
(ii) how it can be adapted to the ZX-Calculus with mixed states, allowing to represent
measurement, and (iii) how it can be adapted to another kind of semantics based on
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sum-over-paths. The goal of this chapter is to see how token-based semantics could be
adapted to the case of graphical languages. While some previous works have already be
done in the quantum case [Dal17], it was still on quantum circuits.

Finally, in Chapter 6 we present a new graphical language called the Many-Worlds
Calculus, featuring both products and coproducts. The language allows one to encode all
of ZX-Calculus with more primitive constructions and richer types. We give (i) a token-
based semantics in the style of Chapter 5, (ii) a denotational semantics deduced from
the token machine and (iii) a equational theory that we prove sound and complete with
respect to the denotational semantics. Finally, we show how, by adapting a restriction
of the language from Chapter 4 to the quantum case, the Many-Worlds Calculus can
serve as a model for such a language and as a case study we show how to encode the
Quantum Switch into the Many-Worlds with only one occurrence of U and V .

12



Introduction (fr)

Informatique Quantique. En informatique quantique, nous avons accès à un nou-
veau type de données : les bits quantique (qubits), qui consistent en la superposition des
bits classiques 0 et 1. L’utilisation de bits quantiques a permis le développement de nou-
veaux algorithmes bénéficiant d’une vitesse exponentielle par rapport à leurs homologues
classiques. Les exemples les plus marquants étant l’algorithme de Grover, permettant
de rechercher un élément dans une liste de n éléments en O(

√
N) [Gro96] et son ap-

plication directe dans l’algorithme de Shor, permettant de décomposer un nombre en
ses facteurs premiers exponentiellement plus rapidement que les algorithmes classiques
connus [Sho99]. Ces algorithmes sont écrits en utilisant le modèle de mémoire quantique
(QRAM). Dans ce modèle, un ordinateur classique est relié à un coprocesseur quantique.
Alors que l’ordinateur classique a accès à l’expressivité complète des systèmes de types
et aux méthodes de programmation connues, le coprocesseur quantique est seulement
capable d’exécuter des circuits quantiques, l’homologue quantiques des circuits booléens,
sur certains qubits d’entrée. Un circuit quantique consiste en une séquence d’opérations
unitaires (appelées portes) qui mettent à jour les les états des qubits d’entrée, lorsqu’ils
traversent les portes quantiques. Le résultat de l’exécution du circuit quantique est
ensuite renvoyé à l’ordinateur classique après avoir effectué une mesure.

D’un point de vue sémantique, les états d’une mémoire quantique constituée de n bits
quantiques est un vecteur dans un espace de Hilbert de 2n dimensions. Un circuit quan-
tique est alors une description linéaire et séquentielle d’opérations élémentaires décrivant
une application linéaire, unitaire sur l’espace d’état.

D’un point de vue formel, les circuits quantiques ont une structure très rigide, ne per-
mettant que peu de raisonnement abstrait sur l’exécution du circuit : la plupart des
portes sont des matrices et pour prouver une quelconque propriété il faut réaliser des
calculs matriciels, bien que certains formalismes atténuent cette difficulté [Amy18]. Les
langages graphiques pour l’informatique quantique ont été présentés comme un moyen
de résoudre ce problème. Venant tout droit des diagrammes de Feyman [FH65], les
langages graphiques sont couramment utilisés pour représenter les processus quantiques.
Qu’ils soient directement basés sur les circuits [Gre+13; Dal17; PRZ17; Cha+] ou is-
sus de l’étude catégorique comme le ZX-calcul [CK17; CD11], néanmoins, ces langages
formels sont toujours liés au modèle de coprocesseur quantique dans le sens où la seule
structure monöıdale qui peut être appliquée aux qubits est le produit de Kronecker
(multiplicatif). Une autre approche pour le raisonnement abstrait sur les programmes
quantiques serait le développement de langages de programmation quantiques typés.
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Dans ce contexte, les types pourraient nous aider à raisonner sur les propriétés des pro-
grammes quantiques. Les systèmes de types ont été utilisés avec succès en informatique
classique pour raisonner sur les programmes, en particulier à travers la correspondance
de Curry-Howard [Cur34] qui stipule que les types de programmes correspondent aux
formules logique et les programmes aux preuves, tandis que l’évaluation du programme
correspond à la simplification d’une preuve. Cette correspondance a été utilisée pour
refléter les logiques du premier et du second ordre avec des types dépendants [BC13;
Ler09], des logiques de séparation avec des systèmes de type pouvant gérer la gestion de
la mémoire [Rey02; Jun+17], des logiques sensibles aux ressources avec confidentialité
différentielle [Gab+13], des logiques avec monades permettant le raisonnement sur les
effets de bord [Swa+16; Mai+19], la logique classique [Gri89], dans le développement
de langages de programmation avec des systèmes de types riches [Nor07; OSG08].
Néanmoins, une telle correspondance n’a pas encore émergée dans le cadre quantique,
même si certains progrès ont été réalisés [DD22; DCM22; SVV18], avec des structures
de type limitées.

Quantum Control Flow.

En effet, dans le modèle standard, les opérations sur la mémoire quantique sont séquentielles
et non-branchantes. Cela signifie que dans le modèle standard, seul l’ordinateur classique
a accès aux boucles, tests, et autres structures de contrôle. Cependant, des expériences
montrent que la notion de contrôle quantique est réalisable et que le modèle coprocesseur
est de ce fait trop rigide et des constructions plus riche peut être considérée, ce que les
circuits quantique ou le ZX-Calcul n’autorisent pas.

L’exemple typique d’un comportement de calcul quantique difficilement réalisable dans
les circuits quantiques ou le ZX-calcul est le Quantum Switch [Chi+13].

Considérons deux bits quantiques x et y et deux opérations unitaires U et V agissant
sur y. Le problème consiste à générer l’opération qui exécute UV sur y si x est dans
l’état |0〉 et V U s’il est dans l’état |1〉.

QSwitch(x, U, V ) =

{
U V if x = |0〉
V U if x = |1〉

Mais, comme x peut être en superposition, l’opération peut donc être décrite par:

(α |0〉+ β |1〉)⊗ |y〉 7→ α |0〉 ⊗ (UV |y〉) + β |1〉 ⊗ (V U |y〉).

Il s’agit d’un test purement quantique : non seulement on peut avoir des valeurs en
superposition (ici, x) mais aussi des ordres d’exécution. Ceci est en contraste fla-
grant avec ce qui se passe dans le modèle standard de coprocesseur quantique où la
seule source de branchement vient de l’ordinateur classique. Alors que ce programme a
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été montré comme étant impossible d’implémenter dans le modèle standard du copro-
cesseur avec une seule instance de U et de V [Chi+13], il est néanmoins physiquement
réalisable [Abb+20].

La plupart des langages de programmation quantique sont encore liés au modèle QRAM
et ne comportent que des tests et des boucles classiques [Sin+22; Gre+13], des modèles
de calcul supportant la superposition des ordres d’exécution ont été étudiés dans la
littérature, tels que ceux proposant une extension des circuits [CDP08; Por+17; VKB21;
Wec+21]. Ces approches visent généralement à discuter de la notion de canal quantique
d’un point de vue théorique de l’information quantique.

Types Quantique. Le modèle QRAM et le ZX-Calcul ne permettent de représenter
que des tenseurs de qubits comme types de données d’entrée et de sortie. Ils ne n’ont
pas de coproduit natif, qui pourrait être utilisé pour les tests, ni de structures de types
plus riches comme les types inductifs ou cöınductifs.

La présence d’un coproduit pourrait faciliter la représentation des tests, permettant
de considérer différents chemins d’exécution. C’est l’approche suivie dans le PBS-
Calcul [CP20], bien que le PBS-Calcul ne comporte pas de tenseur : leur composi-
tion parallèle correspond à la superposition des positions d’un seul qubit, alors que
dans d’autres langages (comme le ZX-Calcul), la composition parallèle correspond à un
tenseur de qubits.

Des langages de programmation quantique avec des types, comportant à la fois un tenseur
et un coproduit, ont été développés [SVV18; VRH22] bien que dans ces travaux, aucune
relation avec un système de preuve formel n’ait encore été établie. La mise en relation
d’un système de type quantique pur avec un système logique a été considéré dans [DD22]
dans le style d’une logique de déduction naturelle à travers l’utilisation d’un nouveau
connecteur � permettant la superposition de données, avec une sémantique étudiée
pour un fragment de la langage, basée sur la catégorie des S-semimodule, pour S un
semiring commutatif annulatif [DCM22]. Cependant, leur logique est limitée au fragment
intuitionniste de la logique linéaire sans tenseurs et la question du contrôle quantique
n’est pas discutée.

Les langages graphiques comportant à la fois un tenseur et un coproduit sont basés sur la
notion de bandes, ou de rubans [Dun09; Mel14]. Le coproduit est capable de séparer une
bande en deux, rendant les deux parties impossible de communiquer l’une avec l’autre
jusqu’à ce qu’elles soient fusionnées à nouveau. Tandis que le tenseur est simplement
la paire d’une donnée, comme le montre dans Figure 0.2. Cependant, ces formalismes
ne sont pas intrinsèquement quantiques : le séparation et la fusion des bandes doivent
être effectués d’une manière bien parenthésée rendant impossible la représentation de la
superposition quantique. D’un point de vue sémantique, le calcul quantique pure avec
coproduit et tenseurs ont été étudiés [DCM22; Cha+22], mais il n’est pas clair comment
la notion des types inductifs et la récursion s’adapterait dans ces contextes et est, jusqu’à
présent, la question est laissée ouverte.
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(A⊗B)⊕ C (A′ ⊗B′)⊕ C ′

C C ′

⊕ ⊕

f

g

h

A

B

A′

B′⊗ ⊗

Figure 0.2.: Splits over coproduct and tensor

Le branchement des chemins d’exécution peut être utilisé pour déterminer quand un
programme doit se terminer ou non. La notion de récursion et de types inductifs
dans l’informatique quantique pure est encore une fois absente : afin de réaliser de la
récursion, il faut s’assurer que chaque étape du calcul est réversible et que le programme
récursif est toujours bien défini, car l’opération entière doit être une opération unitaire.
Dans [SVV18], les auteurs développent un langage de programmation quantique pur
avec le produit et coproduit et le type inductif des listes et avec de fortes contraintes
assurant la la terminaison et la réversibilité, ce qui ouvre la voie à une généralisation et
le développement d’une logique propre.

Contributions. Nous essayons de répondre au problème de la recherche d’un modèle
de calcul quantique pur avec un système de type de données riches, le tout avec une
correspondance Curry-Howard. Nous proposons deux approches :

• Le premier, basé sur un langage de programmation purement quantique dans le
style de Theseus [JS12; JS14; SVV18] où nous présentons un langage de program-
mation linéaire et réversible avec des types inductifs, ainsi qu’une correspondance
une correspondance de Curry-Howard avec la logique µMALL : logique linéaire
avec les plus petits et plus grands points fixes. Là où [SVV18] étend le langage
au cas quantique, avec le type limité de listes, nous restons dans le cas purement
classique. L’extension pour type inductif quantique pur est laissée comme travail
futur.

• La seconde consiste à l’utilisation des sémantiques à jetons inspiré de la Géométrie
de l’Intéraction de Girard pour des langages graphiques. Nous montrons dans un
premier temps comment capturer la sémantique dénotationnelle du ZX-Calcul à
partir d’une sémantique à jeton. Nous développons ensuite un nouveau langage
graphique, inspiré des réseaux de preuves de la logique linéaire, possédant à la fois
un tenseur et un coproduit, permettant de gérer à la fois la collections de plusieurs
données, mais aussi le branchement d’exécution. Le langage vient avec sa propre
sémantique à jeton ainsi qu’une théorie équationnelle.

Plan de la thèse. La thèse est organisée comme en deux partie: la partie I introduit
les notions nécessaires à la compréhension de cette thèse. Le chapitre 1 introduit les
notions de calcul réversible et quantique nécessaire, tandis que le chapitre 2 introduit le
ZX-Calcul : un langage de cordes pour le calcul quantique. Enfin, le chapitre 3 introduit
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les notions de théorie de la démonstration nécessaire, en particulier en introduisant le
formalisme de µMALL: logique linéaire avec plus petits et plus grands point fixes.

La partie II est composée de trois chapitres sur mes contributions personnelles. Dans
le chapitre 4 nous introduisons un langage linéaire et réversible basé sur le pattern-
matching. Le langage est une extension du langage classique présenté dans [SVV18]. Le
système de type du langage enforce des contraintes qui nous garantissent que n’importe
quelle fonction bien typée (appellées isos) est reversible. Nous montrons (i) comment
n’importe quelle fonction primitive récursive peut être encodée comme un iso du langage,
(ii) comment n’importe quelle fonction bien typée représente un isomorphisme de preuve
dans la logique µMALL, et enfin (iii) nous montrons comment en relâchant les contraintes
du système de type pour considérer des fonctions partielles, nous pouvons encoder les
Machines de Turing Réversibles. Les programmes linéaires et réversibles étant un sous-
ensemble du calcul quantique, ce chapitre est un premier pas vers des types purement
quantique et du contrôle quantique.

Le chapitre 5 s’intéresse à la définition d’une sémantique à jetons pour le ZX-Calcul.
La sémantique est inspirée des sémantiques à jetons de la Géométrie de l’Intéraction
de la logique linéaire, dans lesquels des jetons se déplacent dans le réseaux de preuve,
vu comme un graphe, tout en capturant le contenu calculatoire de la preuve. Dans ce
chapitre, nous montrons comment notre machine à jetons (i) sous certains invariants,
capture exactement la sémantique dénotationnelle du ZX-Calcul, (ii) comment la ma-
chine à jetons peut être adaptée pour capturer l’extension du ZX-Calcul avec mesure,
et (iii) comment la modifier pour capturer un autre type de sémantique du ZX-Calcul
bassé sur les sum-over-paths. Le but du chapitre est de voir comment des sémantiques
à base de jetons peuvent être adaptées dans le cas des langages graphiques pour le cal-
cul quantique, pour pouvoir par la suite se rapprocher des réseaux de preuves de la
logique linéaire. Des travaux existent déjà sur les sémantiques à jetons pour le calcul
quantique [Dal17], mais restent dans le cadre des circuits quantiques.

Pour finir, dans le chapitre 6 nous présentons un nouveau langage graphique nommé
le Many-Worlds Calculus. A l’inverse du ZX-Calcul qui ne contient qu’un tenseur,
le Many-Worlds contient à la fois un tenseur et un coproduit. Il permet d’encoder de
manière naturelle l’ensemble du ZX-Calcul, mais possède en plus un système de type plus
riche, dû au coproduit, qui nous permet de réaliser des tests quantique. Le chapitre est
découpé en plusieurs parties, (i) nous donnons d’abord une sémantique à jetons, adaptée
de celle du chapitre précédent, (ii) nous donnons une sémantique dénotationnelle qui a
été détuite de la machine à jetons, (iii) nous donnons une théorie équationnelle sur les
diagrammes du Many-Worlds Calculus, et nous montrons l’universalité du langage ainsi
que sa complétude. Comme étude de cas nous montrons comment encoder le Quantum
Switch dans le langage. Enfin, en (iv) nous montrons comment nous pouvons encoder
une version quantique, sans récursion, du langage d’isos du chapitre 4 dans le Many-
Worldd.
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Chapter 1.

Reversible & Quantum Computation

1.1. Reversible Computation

The idea of reversible computation comes from Landauer and Bennett [Lan61; Ben73]
with the analysis of its expressivity, and the relationship between irreversible computing
and dissipation of energy. Indeed, Laundauer’s principle states that the erasure of infor-
mation is linked to the dissipation of energy as heat [Lan61; Bér+12]. This principle was
enough to motivate the study of reversible processes. In order to avoid erasure of infor-
mation, reversible computation often makes use of garbage or auxiliary wires: additional
information kept in order to ensure both reversibility and the non-erasure of informa-
tion. In reversible computation, given some process f , there always exists an inverse
process f−1 such that their composition is equal to the identity: f ◦ f−1 = Id = f−1 ◦ f .
In programming languages, this is done by ensuring both forward and backward deter-
minism. Forward determinism is almost always ensured in programming language: it is
about making sure that, given some state of your system, there is a unique next state
that it can go to. Backward determinism on the other hand checks that given a state,
there is only one state that it comes from. Standard programming languages does not
ensure backward determinism. On a computational perspective, the Toffoli gate [Tof80],
is enough to realize universal classical computation: any boolean function can be imple-
mented by Toffoli gates. The Toffoli gate is a reversible 3-input 3-output gate which flips
the 3rd input if and only if the first two are at 1. This also means that when implement-
ing a classical, reversible computation with only Toffoli gates, additional information is
necessarily kept. Nevertheless, there exists a way to turn a non-reversible process into
a reversible one, without additional information at the end (but with auxiliary wires),
albeit with an increase in computational time [Ben73]. All of this led to an interest in re-
versible computation [Ben00; Ama+20], both with a low-level approach [Car12; Wil+16;
SM13], and from a high-level perspective [Lut86; YG07; YAG16; JS12; JS14; SVV18;
YAG12; TA15; JKT18]. Reversible programming lies on the latter side of the spectrum,
and two main approaches have been followed. Embodied by Janus [Lut86; YG07; Yok10;
YAG16] and later R-CORE and R-WHILE [GKY19], the first one focuses on imperative
languages whose control flow is inherently reversible —the main issue with this aspect
being tests and loops. The other approach is concerned with the design of functional
languages with structured data and related case-analysis, or pattern-matching [YAG12;
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TA15; JS14; SVV18; JKT18]. To ensure reversibility, strong constraints have to be
established on the pattern-matching in order to maintain reversibility.

In general, reversible computation captures partial injective maps [GKY19] from inputs
to outputs. Indeed, from a computational perspective reversibility is understood as a
time-local property: if each time-step of the execution of the computation can soundly
be reversed, there is no overall condition on the global behaviour of the computation. In
particular, this does not say anything about termination: a computation seen as a map
from inputs to outputs might very well be partial, as some inputs may trigger a (global)
non-terminating behaviour.

The categorical analysis of partial injective maps has been thoroughly analysed since
1979, first by Kastl [Kas79], and then by Cockett and Lack [CL02; CL03; CL07]. This led
to the development of inverse categories: a category equipped with an inverse operator
in which all morphisms have partial inverses and are therefore reversible. The main
aspect of this line of research is that partiality can have a purely algebraic description:
one can introduce a restriction operator on morphisms, associating to a morphism a
partial identity on its domain.

This categorical framework has recently been put to use to develop the semantics of
specific reversible programming constructs and concrete reversible languages: analysis
of recursion in the context of reversibility [AK16; Kaa19b; KV19], formalization of re-
versible flowchart languages [GK18; Kaa19a], analysis of side effects [HK15; HKK18],
etc. Interestingly enough however, the adequacy of the developed categorical constructs
with reversible functional programming languages has seldom been studied. For in-
stance, if Kaarsgaard et al. [KAG17] mention Theseus as a potential use-case, they do
not discuss it in detail. So far, the semantics of functional and applicative reversible
languages has always been done in concrete categories of partial isomorphisms [KV19;
KR21; CLV21].

We present two models of reversible computation that will be useful at some point in
this thesis, the first one is called RPP [PPR20] (Reversible Primitive Permutations): a
set of reversible functions that allows to represent any primitive recursive function, and
Reversible Turing Machine [AG11a; MY07].

1.1.1. Reversible Primitive Permutations

RPP is a set of integer-valued functions of variable arity. We define it by arity as follows:
we note RPPk for the set of functions in RPP from Zk to Zk, it is built inductively on
k ∈ N by:

• the successor (S), the predecessor (P ), the identity (ID) and the sign-change that
are part of RPP1.

• The swap function (X ) is part of RPP2.
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Figure 1.1.: Generators of RPP

• For any function f, g, h ∈ RPPk and j ∈ RPPl, we can build (i) the sequential
composition f ; g ∈ RPPk, (ii) the parallel composition f || j ∈ RPPk+l (iii) the
iterator It[f ] ∈ RPPk+1 and (iv) the selection If[f, g, h] ∈ RPPk+1.

The behaviour of the functions is described under a circuit-like form, as in [PPR20],
where the left-hand-side variables of the diagram represent the input of the function
and the right-hand-side is the output of the function. The functions are shown in Fig-
ure 1.1.

Finally, the set of all functions that form RPP is taken as the union for all k all of the
RPPk:

RPP = ∪k∈N RPPk

Remark 1.1.1. In their paper [PPR20], the authors make use of two other constructors:
generalized permutations over Zk and weakenings of functions, but those can actually be
defined from the other constructors [PPR20, Section 3] so that in the following section
we do not give their encoding.

Then, if f ∈ RPPk we can define an inverse f−1:
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Definition 1.1.2 (Inversion). The inversion is defined as follows:

Id−1 = Id S−1 = P P−1 = S
Sign−1 = Sign X−1 = X (g; f)−1 = f−1; g−1

(f || g)−1 = f−1 || g−1 (It[f ])−1 = It[f−1] (If[f, g, h])−1 = If[f−1, g−1, h−1]

Proposition 1.1.3 (Inversion defines an inverse [PPR20]). Given f ∈ RPPk then
f ; f−1 = Id = f−1; f .

Theorem 1.1.4 (Soundness & Completeness [PPR20]). RPP is PRF-Complete and
PRF-Sound: it can represent any Primitive Recursive Function and every function in
RPP can be represented in PRF.

1.1.2. Reversible Turing Machines

We start by introducing Reversible Turing Machine, following the formalism from [MY07;
Ben73].

Definition 1.1.5 (Turing Machine). We define the notion of a Turing Machine (TM)
T as a tuple (Q,Σ, δ, b, qs, qf ) where Q is a finite set of states, Σ a finite set of tape
symbols, b ∈ Σ, the blank symbol and δ ⊆ ∆ = (Q × ((Σ × Σ) ∪ {←, ↓,→}) × Q) is a
partial relation defining the transition relation.

The states qs and qf are the starting and final state. There must be no transition leading
out of qf and no relation leading into qs.

Definition 1.1.6 (Configuration). The configuration of a TM is a tuple (q, (l, s, r)) ∈
Q × (Σ∗ × Σ × Σ∗) where q is the internal state, l, r are the left and right parts of the
tape (as string) and s ∈ Σ is the current symbol being scanned.

A TM T in configuration C = (q, (l, s, r)) leads to configuration C ′ = (q′, (l′, s′, r′)),
written as T ` C  C ′ in a single computation step if there exists a transition (q, a, q′) ∈
δ where a is either (s, s′), in which case l = l′ and r = r′ or a ∈ {←, ↓,→} in which
case we have for the case a =←: l′ = l · s and for r = x · r2 we have s′ = x and r′ = r2,
similarly for the case a =→ and for the case a =↓ we have l′ = l and r′ = r.

Definition 1.1.7 (Local forward/backward determinism). A TM T is local forward
deterministic if and only if for any distinct pair of triples (q1, a1, q

′
1) and (q2, a2, q

′
2) in

δ, if q1 = q2 then a1 = (s1, s
′
1) and a2 = (s2, s

′
2) and s1 6= s2.

A TM T is local backward deterministic if and only if for any distinct pair of triples
(q1, a1, q

′
1) and (q2, a2, q

′
2) in δ, if q′1 = q′2 then a1 = (s1, s

′
1) and a2 = (s2, s

′
2) and s′1 6= s′2.

Definition 1.1.8 (Reversible Turing Machine). We say that a Turing Machine is re-
versible if and only if it is locally forward and backward deterministic.
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The transition relation works as follow:
If the transition is done by an element (q, (s, s′), q′) ∈ δ, then it means that if we are in
state q and read s, we write s′ and go in state q′. If the transition is (q, d, q′) it means
that if we are in state q, we move by direction d and go into state q′.

Definition 1.1.9 (String Semantics). The semantic JT K of a TM is given by:

JT K = {(s, s′) ∈ ((Σ\{b})∗ × (Σ\{b})∗) | T ` (qs, (ε, b, s)) 
∗ (qf , (ε, b, s

′))}

The computation is as follows: from starting state qs with input s, in a standard configu-
ration (qs, (ε, b, s)) run the machine until it halts in a standard configuration (qf , (ε, b, s

′))
with output s′, or diverges.

We say that T computes function f if and only if JT K = f .

Theorem 1.1.10 (RTMs are injective [Ben73]). If T is a RTM, then JT K is an injective
function.

Lemma 1.1.11 (RTM Inversion [Ben73]). Given a RTM T = (Q,Σ, δ, b, qs, qf ), define
T−1 = (Q,Σ, inv(δ), b, qf , qs) as the inverse Turing Machine, where inv(δ) is defined as:

• inv(q, (s, s′), s′) = (q′, (s′, s), q)

• inv(q,←, q′) = (q′,→, q)

• inv(q, ↓, q′) = (q′, ↓, q)

• inv(q,→, q′) = (q′,←, q)

T−1 compute the inverse function, i.e
q
T−1

y
= JT K−1.

Finally, an important result is that any Turing Machine can be turned into a Reversible
Turing Machine while preserving the semantics:

Theorem 1.1.12 (Bennett’s method [Ben73]). Given a 1-tape Turing Machine T , there
exists a 3-tape reversible Turing Machine B(T ), such that JB(T )K (x) = (x, JT K (x)).

Notice that T and B(T ) does not have the same exact the same semantics: in the output
of B(T ) the initial input x is still present. As we stated earlier, reversible computation
always come at the cost of having to keep in memory additional information to ensure
reversibility.

Finally, for robustness, we will state that any k-tape RTM can be turned into a 1-tape
RTM [AG11b].
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Chapter 1. Reversible & Quantum Computation

1.2. Quantum Computation

Reversible computation makes an important subset of quantum computation without
measurement. In both setting, all operations are reversible. In the quantum case,
a reversible operation send basis vectors to basis vectors: it is a unitary operation.
Quantum computation also requires operations to be linear, which can be considered
in a linear, reversible computational model. The main difference arise in the data they
handle: quantum computing have access to a new kind of data, quantum bits.

Figure 1.2.: The QRAM Model

The QRAM Model In general quantum computation, one has access to a coprocessor
holding a “quantum” memory. This memory consists of “quantum” bits, the basic unit
of information in quantum computation, having a peculiar property: their state cannot
be duplicated, and the operations one can perform on them are unitary, reversible op-
erations. The coprocessor comes with an interface to which one can send instructions
to allocate, update or read quantum registers. Quantum memories can be used to solve
classical problems faster than with purely conventional means. The most prominent ex-
amples being Grover’s algorithm, allowing to search for an element in a list of n element
in O(

√
N) [Gro96] and its direct application in Shor’s algorithm, allowing for decompos-

ing a number into its prime factor exponentially faster than classical algorithm [Sho99].
Quantum programming languages are nowadays pervasive [FBW18; VRH22] and several
formal approaches based on logical systems have been proposed to relate to this model
of computation [SV06; PRZ17; RS17]. However, all of these languages rely on a purely
classical control-flow: quantum computation is reduced to describing a list of instruc-
tions —a quantum circuit— to be sent to the coprocessor. In particular, in this model,
operations performed on the quantum memory only act on quantum bits and tensors
thereof, while the classical computer enjoys the manipulation of any kind of data with
the help of rich type systems. Reversible computation can be seen as a subcase of quan-
tum computation. While reversible computation allows for the duplication and erasure
of data, this is not the case in quantum computation, but in both cases the operations
are always reversible.

Dirac Notation Dirac’s notation is a way to represent matrices and vectors in a more
compact way. In Dirac notation [NC02], vectors of the form |.〉 (called “kets”) are
considered as column vector, and therefore |0〉 = ( 1

0 ), |1〉 = ( 0
1 ), and given α, β complex

numbers, α |0〉 + β |1〉 = ( αβ ). The tensor product of spaces V and W whose bases are
respectively {vi}i∈I and {wj}j∈J is the vector space of basis {vi⊗wj}i,j∈I×J , where vi⊗wj

24
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is a formal object consisting of a pair of vi and wj . We denote |x〉⊗|y〉 as |xy〉 and |0m〉 to
represent an m-fold tensor of |0〉. As a shortcut notation, we write |φ〉 for column vectors
consisting of a linear combination of kets. Dirac also introduced the notation “bra” 〈x|,
standing for a row vector. So for instance, α 〈0| + β 〈1| is ( α β ). If |φ〉 = α |0〉 + β |1〉,
we then write 〈φ| for the vector α 〈0| + β 〈1| (with (.) the complex conjugation). The
notation for tensors of bras is similar to the one for kets. For instance, 〈x| ⊗ 〈y| = 〈xy|.
Using this notation, the scalar product is transparently the product of a row and a
column vector:

〈
φ ψ

〉
, and matrices can be written as sums of elements of the form

|φ〉〈ψ|. For instance, the identity on C2 is ( 1 0
0 1 ) = ( 1 0

0 0 )+( 0 0
0 1 ) = ( 1

0 ) ( 1 0 )+( 0
1 ) ( 0 1 ) =

|0〉〈0|+ |1〉〈1|.

Quantum State As quantum computation works with vectors and matrices, we take
the two column vectors |0〉 and |1〉 as the counterpart of the classical bits 0 and 1.
Richer states of multiple bits are built using tensor products of states. Remember that
the tensor product between matrices is defined as:

A⊗B =


a00B a01B · · ·

a10B
. . .

...


and hence |00〉 = |0〉⊗|0〉 =

(
1
0
0
0

)
. Quantum state can be in superposition by considering

a linear combination of classical bits, written α |0〉+β |1〉, and where α, β ∈ C. Quantum
computation asks for the state to be normalized, meaning that |α|2+|β|2 = 1. In general,

a quantum state can be written as
∑
i∈I

αi |i〉 with
∑
i∈I
|αi|2 = 1.

Not all quantum states can be written as a tensor of smaller states. Those inseparable
states are called entangled state. For example, the Bell State |00〉+|11〉√

2
cannot be written

as the tensors of two other states.

While |0〉 , |1〉 form a computational basis, we could also consider the basis |+〉 , |−〉
defined as |+〉 = |0〉+|1〉√

2
and |−〉 = |0〉−|1〉√

2
. One way to go from one basis to the other is

via the Hadamard gate.

Operations & Quantum Circuits Quantum computation is restricted to a particular
kind of operations called unitaries: matrices whose conjugate transpose U∗ is also its
inverse, U−1. Any unitary can be written as

∑
i,j∈B αi,j |i〉〈j| for B an orthogonal basis

of the state space under consideration.

A quantum circuit is the quantum counterpart of boolean circuits: a graphical language
where wires represent qubits and gates represent unitary operations. Qubits flow from
the left of the circuit towards the right, updating their state as they traverse quantum

25



Chapter 1. Reversible & Quantum Computation

gates. A quantum circuit is then a single unitary operation which is made by the
composition of the smaller gates inside it.

|0〉 H

|0〉

Figure 1.3.: Bell State’s quantum circuit

A standard universal set consists of the one-input, one-output Pauli-X, -Y and -Z gates,
the Hadamard gate and the Phase Shift P (φ) gate, represented in a circuit by the diagram

# with # ∈ {X,Y, Z,H, P (φ)} and corresponding respectively to the matrices

( 0 1
1 0 ) ,

(
0 −i
i 0

)
,
(

1 0
0 −1

)
, 1√

2

(
1 1
1 −1

)
,
(

1 0
0 eiφ

)
. Along with the two-input two-output CNOT

gate

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
represented by .

For example, the circuit in Figure 1.3 takes for input two qubits initialized at |0〉, apply
the Hadamard gate on the first qubit and then applies a CNOT in order to produce the
Bell State |00〉+|11〉√

2
.

Measurement One distinct feature of quantum computation is measurement : the col-
lapse of a superposition of states into a single one with some probability. For instance, in
the qubit case, applying a measurement on the state α |0〉+β |1〉 give |0〉 (resp. |1〉) with
probability |α|2 (resp. |β|2). More generally, given a quantum state

∑
i∈B αi |i〉 with B

a orthogonal basis, a measurement on such a state gives us the state |i〉 with probability
|αi|2. The standard semantics for measurement is to work with density matrices and
completely positive maps (CPM).

In a quantum circuit the measurement can always be done at the end. This is called the
Deferred Measurement Principle [NC02]. Therefore, for this thesis we will focus purely
on the unitary part and ignore the measurement.

More information and details can be found in [NC02].
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Graphical Language for Quantum
Computation

The use of graphical representations for computation can be found in many fields of
computer science, the most basic example being the control flow of a program, where
one can initialize a state of the machine, in which each variable is given a value of its
type, and look at the order of instructions that are being executed by the program. A
more formal one would be boolean circuits: graphical representations of an assembly-like
language in which the only connectives are the usual logical ones (negation, conjunction
and disjunction), read from left to right in which the semantics is given by considering
some tokens (the bits) that flow from the input of the diagram all the way to the output
and whose values change according to the gate they enter. Similarly, quantum circuits
(quantum counterparts of boolean circuits) work in the same way, with qubits instead
of bits flowing through the circuit. Although successful, those formalisms are akin to
assembly-like languages which makes it hard to use and to reason about.

Diagrammatic languages for describing the mathematical behaviour of quantum pro-
cesses were already present in the 1940’s with Feynman’s diagrams but, in this section,
we are interested in a particular kind of graphical languages: string diagrams. String
diagrams are a graphical formalism that allows for a 2-dimensional representation of
categorical syntax. Coming all the way from Feynman diagrams [FH65], a graphical
language is an alternative syntax to the usual matrix representation of quantum compu-
tation. String diagrams for quantum computation emerged from the Categorical Quan-
tum Mechanics program by Abramsky and Coecke [AC04; AC09]. Their goal was to be
able to study properties of quantum processes in a more abstract way through the use
of category theory. This led to the development of the ZX-Calculus [CD11], a graph-
ical language for quantum computation. On a formal level, a graphical language is a
PROP [Lac04], that is, a symmetric, strict monoidal structure (C,>,�) whose objects
are of the form W�· · ·�W . The object W is a “wire”, and any object stands for a bunch
of wires. The monoidal structure formalizes how the bunching of wires behaves. For the
purpose of this thesis, we introduce the ZX-Calculus purely as a graphical language. For
further bibliography on the subject we refer to [Vil19; Sel10; JS91; CD11; CK17].
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2.1. The ZX-Calculus

Although the pervasive model for quantum computation, quantum circuits, only have
an informal semantics: qubits travelling from the inputs wires to the outputs wires,
changing their state as they pass through the gates of the circuit. A quantum circuit
is understood as some sequential, low-level assembly language where quantum gates
are opaque black boxes. In particular, quantum circuits do not natively feature any
formal operational semantics giving rise to abstract reasoning or well-founded rewriting
system, and did not, until recently [Clé+22a], feature an equational theory, even though
the current one is not very usable.

From a denotational perspective, quantum circuits are literal descriptions of tensors
and applications of linear operators. These can be described with the original matrix
interpretation [NC02], or with the more recent sum-over-path semantics [Amy18; Cha+]
—this can be regarded as a wave-style semantics. In such a semantics, the state of all of
the quantum bits of the memory is mathematically represented as a vector in a (finite
dimensional) Hilbert space: the set of quantum bits is a wave flowing in the circuit, from
the inputs to the output, while the computation generated by the list of quantum gates
is a linear map from the Hilbert space of inputs to the Hilbert space of outputs.

In recent years, an alternative model of quantum computation with better formal proper-
ties than quantum circuits have emerged: the ZX-Calculus [CD11]. Originally motivated
by a categorical interpretation of quantum theory, the ZX-Calculus is a graphical lan-
guage that represents linear maps as special kinds of graphs called diagrams. Unlike the
quantum circuit framework, the ZX-Calculus comes with a sound and complete [Vil19],
well-defined equational theory on a small set of canonical generators making it possible
to reason on quantum computation by means of local graph rewriting.

The canonical semantics of a ZX diagram consists in a linear operator. This operator can
be represented as a matrix or through the more recent sum-over-path semantics [Vil20].
But in both cases, these semantics give a purely functional, wave-style interpretation
to the diagram. Nonetheless, this graphical language —and its equational theory—
has been shown to be amenable to many extensions and is being used in a wide spec-
trum of applications ranging from quantum circuit optimization [Dun+20; Bac+20],
verification [Hil11; DL14; DG18] and representation such as MBQC patterns [DP10] or
error-correction [BH20; Bea+19].

The ZX-Calculus is a powerful graphical language for reasoning about quantum compu-
tation introduced by Bob Coecke and Ross Duncan [CD11]. A term in this language is
a graph —called a string diagram— built from a core set of primitives. In the standard
interpretation of ZX-Calculus, a string diagram is interpreted as a matrix. The language
is equipped with an equational theory preserving the standard interpretation.
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2.1.1. Pure Operators

The so-called pure ZX-diagrams are generated from a set of primitives, given on the
right: the Identity, Swap, Cup, Cap, Green-spider and H-gate:{

, , , , α

n...

...
m

,

}
n,m∈N
α∈R

The real number α attached to the green spiders is called the angle, we generally write
Znm(α) for a green-spider with n inputs, m outputs and angle α. ZX-diagrams are read
top-to-bottom: dangling top edges are the input edges and dangling edges at the bottom
are output edges. For instance, Swap has 2 input and 2 output edges, while Cup has 2
input edges and no output edges. ZX-primitives can be composed either sequentially or
in parallel:

D2 ◦D1 :=

...

...

...
D2

D1
D1 ⊗D2 :=

...

...
D1

...

...
D2

We write ZX for the set of all ZX-diagrams. Notice that when composing diagrams with
( ◦ ), we “join” the outputs of the top diagram with the inputs of the bottom diagram.
This requires that the two sets of edges have the same cardinality.

Convention 2.1.1. We define a second spider, red this time, by composition of Green-
spiders and H-gates, as shown on the right, similarly for the green-spider, we write the
red-spider as Xn

m(α).

α

...
:=α

...

...

...

Convention 2.1.2. We write σ for a permutation of wires, i.e any diagram generated

by
{

,
}

with sequential and parallel composition. The Cap and Cup are written

respectively as η and ε. We write Znk (α) (resp, Xn
k ) for the green-node (resp, red-

node) of n inputs, k outputs and parameter α and H for the H-gate. Finally, by
abuse of notation a green or red node with no explicit parameter holds the angle 0:...

...
0

...

...
:= and

...

...
0

...

...
:= .

Formally, the ZX-Calculus is a dagger compact category and is in particular a PROP :
objects are natural numbers, and morphisms are the diagrams [CD11]. For more infor-
mation on the categorical background of the ZX-Calculus and other graphical languages
we refer to [Sel10; CK17].

29



Chapter 2. Graphical Language for Quantum Computation

2.1.2. Standard Interpretation

We understand ZX-diagrams as linear operators through the standard interpretation.
Informally, wires are interpreted with the two-dimensional Hilbert space, with orthonor-
mal basis {|0〉 , |1〉}. In the standard interpretation [CD11], a diagram D is mapped
to a finite dimensional Hilbert space of dimension some powers of 2: JDK ∈ Qubit :=
{C2n → C2m | n,m ∈ N}.

If D has n inputs and m outputs, its interpretation is a map JDK : C2n → C2m (by
abuse of notation we shall use the notation JDK : n → m). It is defined inductively as
follows.

u

w
v

...

...

...
D2

D1

}

�
~ =

t
...

...
D2

|

◦

t
...

...
D1

| t
...

...
D1

...

...
D2

|

=

t
...

...
D1

|

⊗

t
...

...
D2

|

r z
= idC2 = |0〉〈0|+ |1〉〈1|

r z
=

∑
i,j∈{0,1}

|ji〉〈ij|

q y
=

q y†
= |00〉 + |11〉

r z
= |+〉〈0|+ |−〉〈1|

t

α

n...

...
m

|

= |0m〉〈0n|+ eiα |1m〉〈1n|

t

α

n...

...
m

|

= |+m〉〈+n|+ eiα |−m〉〈−n|

Intuitively:

• The Hadamard gate is the standard one from quantum computation: 1√
2

(
1 1
1 −1

)
,

that sends the state |0〉 to |0〉+|1〉√
2

and |1〉 to |0〉−|1〉√
2

.

• The cap creates an entangled pair of |00〉 and |11〉, while the cup is its dual: asking
both element of the |xy〉 to be the same, either 0 or 1.

• The green-spider can be seen as a map that checks that all its input are the same, if
its input is |0n〉 it returns |0m〉, if they are all |1n〉 it returns eiα |1m〉 and otherwise
returns the 0 vector.

• The red-spider is the same but on the |+〉 , |−〉 basis.

Example 2.1.3. The states |0〉 and |1〉 can be encoded as: and
π

A maybe more intuitive way to look at it is when considering a simpler green and red-
spider where the green-spider has one input and n outputs and the red-spider have n
inputs and one output. Then, the green spider can be seen as a copy operation on
classical data while the red spider can be seen as a XOR:

=
... ...

kπ

kπ kπs.t....

knπk1π ...
=

∑
j
kjπ

...

s.t. for k, k1, . . . , kn ∈ {0, 1}
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... = α+ββ

...
α

...

(S)......

...

...
=

(Id1)
=

(Id2)

=
(CP)

=
(B)

π

α
=

(π)

−α

π π

α

...
=α

...

...

... (H)

Figure 2.1.: Minimal equational theory of the ZX-Calculus

From those, we can recover the general green and red spider:

...

...
:=

...

......
α

α

...

...
:=

...

......
α

α

Example 2.1.4. The CNOT gate (up to some scalar) in the ZX-Calculus can be defined
as:

u

v

}

~ =

(s {
⊗

r z)
◦
(s {

⊗
s {)

= 1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

2.1.3. Properties and structure

In this section, we list several definitions and known results that we shall use in the
remainder of the thesis. See e.g. [Vil19] for more information.

Universality ZX-diagrams are universal [CD11] in the sense that for any linear map
f : n→ m, there exists a diagram D of ZX such that JDK = f .

The price to pay for universality is that different diagrams can possibly represent the

same quantum operator, for instance we have that

t |

=
rz

. There exists however a

way to deal with this problem: an equational theory. We give in Figure 2.1 a complete
axiomatization of the standard ZX-Calculus. This equational theory is not the only one
that exists for the ZX-Calculus, also several equational theories have been designed for
various fragments of the language [Bac14; JPV18a; HNW18; JPV18b; JPV19; Vil19].
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= D =
...

...

......

D
...

...

... ...

= =

α
...

...
= α

...

...

σ
...

σ′...

...

...
α =

...

...
α =

Figure 2.2.: Connectivity rules. D represents any ZX-diagram, and σ, σ′ any permutation
of wires.

One important aspect of the equational theory is that ZX-diagrams can be seen as
open graphs. Therefore, any graph isomorphism is a valid derivation in the equational
theories. For example:

π
2

=
π
2

Core axiomatization Despite this variety, any ZX axiomatization builds upon the core
set of equations provided in Figure 2.2, meaning that edges really behave as wires that
can be bent, tangled and untangled. They also enforce the irrelevance on the ordering
of inputs and outputs for spiders. Most importantly, these rules preserve the standard
interpretation given in Section 2.1.2. These rules are sometimes referred to as “only
connectivity matters”, and they preserve the semantics, most of the time people consider
diagrams modulo those rules. Those rules are the one given by the underlying PROP
structure.

Completeness The ability to transform a diagram D1 into a diagram D2 using the
rules of some axiomatization zx (e.g. the core one presented in Figure 2.1) is denoted
zx ` D1 = D2.

The axiomatization is said to be complete whenever any two diagrams representing the
same operator can be turned into one another using this axiomatization. Formally:

JD1K = JD2K ⇐⇒ zx ` D1 = D2

The first complete axiomatization of the ZX-Calculus was provided in [Vil19].

It is common in quantum computing to work with restrictions of quantum mechanics.
Such restrictions translate to restrictions to particular sets of diagrams – e.g., the π

4 -
fragment which consists of all ZX-diagrams where the angles are multiples of π

4 . There
exist axiomatizations that were proven to be complete for the corresponding fragment
(all of the aforementioned references tackle the problem of completeness).
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Input and output wires An important result from quantum computation that trans-
lates nicely is the ZX-Calculus is the following:

Theorem 2.1.5 (Choi-Jamio lkowski). There are isomorphisms between {D ∈ ZX | D :
n→ m} and {D ∈ ZX | D : n− k → k +m} (when k ≤ n).

To see how this can be true, simply add cups or caps to turn input edges to output
edges (or vice versa), and use the fact that we work modulo the rules of Figure 2.2 as

in:

...

......

When k = n, this isomorphism is referred to as the map/state duality. A related but
more obvious isomorphism between ZX-diagrams is obtained by permutation of input
wires (resp. output wires).

Example 2.1.6. The CNOT diagram composed with the state |10〉 and its reduction in
the ZX-Calculus:

π

π
=

π

π
C
=

π

π
S
=

π

π

S
=

ππ

and we have that

t ππ |

=

s
π
{
⊗

s
π
{

= |11〉

2.1.4. ZX-diagrams for Mixed Processes

While the ZX-Caclulus allows to represent pure quantum computation, it is possible to
consider its extension to mixed processes, allowing to represent measurement by adding
a unary generator to the language [CP12; Car+19], that intuitively enforces the state
of the wire to be classical. We denote with ZX the set of diagrams obtained by adding
the generator.

Similar to what is done in quantum computation, the standard interpretation J.K for
ZX maps diagrams to CPMs. If D ∈ ZX we define JDK as ρ 7→ JDK† ◦ ρ ◦ JDK, and
we set J K as ρ 7→ Tr(ρ), where Tr(ρ) is the trace of ρ.

There is a canonical way to map a ZX -diagram to a ZX-diagram in a way that preserves
the semantics: the so-called CPM-construction [Sel07]. We define the map (conveniently
named) CPM as the map that preserves compositions ( ◦ ) and ( ⊗ ) and such that:
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CPM


...

...

...
D2

D1

 = CPM

(
...

...
D2

)
◦ CPM

(
...

...
D1

)

CPM

(
...

...
D1

...

...
D2

)
= CPM

(
...

...
D1

)
⊗ CPM

(
...

...
D2

)

CPM
( )

= CPM
( )

=

CPM
( )

= CPM
( )

= CPM ( ) =

CPM

(
α

n...

...
m

)
= α

...
m

-α

n...
CPM

(
α

n...

...
m

)
= α

...
m

-α

n...
CPM

( )
=

CPM(D) has to be understood as two copies of D where is replaced by and
where every angle α is changed to −α in the second copy. Indeed, a CPM operation
from A→ B can be seen as a unitary operation from A⊗A∗ → B ⊗B∗, this is what is
done in this transformation.

In the general ZX-Calculus, it has been shown that the axiomatization itself could
be extended to a complete one by adding only four axioms and is sound and com-
plete [Car+19].

= = =α =

Figure 2.3.: Additional rules for . Together with zx, they form the equational theory
zx .

Example 2.1.7. A ZX -diagram and its associated CPM construction.

α

7→

α −α
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Chapter 3.

Proof Theory & The Curry Howard
Isomorphism

3.1. Logic & Computation

In this chapter, we give a short background on the typed lambda-calculus whose notions
we will use in Chapter 4, and logic, and see how both notions are related by the Curry-
Howard Correspondence. We also give a extension introduction to the logic µMALL, an
extension of linear logic with least and greatest fixed point.

3.1.1. The Simply-Typed λ -Calculus

Syntax Among the many computational models that exists, the one that impacted the
most the theory and development of programming languages is without a doubt the λ -
calculus. Developed by Alonzo Church in the 1930s [Chu36; Chu41]. The λ -calculus is
a model of higher-order computation that manipulates λ -terms built upon the following
syntax:

t, u ::= x | t u | λx.t

where x is a variable, taken from an infinite set of variables V, the term (t u) is the
application of a term t (considered as a function) to another term u (the input of said
function) and λx.t is a function declaration (also called a λ -abstraction) which binds
the variable x inside t. Intuitively λx.t can be seen as an unnamed function x→ t. For
instance λx.x can be seen as the identity function while λx.y as a constant function that
always returns y.

Scope & The α-equivalence As said, λx.t acts as a binder that binds the variable
x inside t, and so we say that x is bound inside t. On the opposite, we say that x is
free inside t if it is not bound by an abstraction. More formally we can define the set
of free-variables inside a term t by induction on t as FV(x) = x, FV(t t′) = FV(t) ∪
FV(t′),FV(λx.t) = FV(t)\{x}. A term with no free variable is said to be closed (also
called a combinator).
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Contexts A context is a term with a hole in it. If C is a context, then C[t] is the
result of filling the hole with t. For example, if we have the context C = λx.� then
C[t] = λx.t. Contexts can be used when we wish to focus on one position in a term, they
can be used in defining particular evaluation order. For instance, we can formulate the
arbitrary context C ::= � |CM |M C | λx.C. Contexts are used to define how a term
valuate through the β-reduction as we will see shortly.

Types Introduced by Church [Chu40], the Simply Typed λ -Calculus is an extension of
the base λ -calculus in which terms are typed : annotated with some types, according to
some typing system. A type system is a set of deduction rules allowing us to build typing
derivations. Type systems usually use typing context : a set of pairs of term-variable and
a type defined as ∆ ::= ∅ | x : A,∆ where the comma represents a union and A is a type.
In the simply typed λ -calculus, the types are defined by the grammar o ::= o | o1 → o2

and a typing judgement is of the form ∆ ` t : o, which can be understood as: under
context ∆, the term t has type o. The typing system is formally defined by the rules:

x : o,∆ ` x : o

x : o1,∆ ` t : o2

∆ ` λx.t : o1 → o2

∆ ` t : o1 → o2 ∆ ` t′ : o1

∆ ` t t′ : o2

Then, one can decide to only consider well-typed terms: terms who have a typing deriva-
tion defined inductively by the rules given above.

Computation Computation inside the λ -calculus works with β-reduction: when an
abstraction (λx.t) is applied to some argument u, the β-reduction will produce the term
t in which all occurrence of the free variable x inside t has been replaced by u, noted
t[x← u]. In the way we described the β-reduction we may end up with a problem called
variable capture: consider (λx.y)[y ← x] = λy.y. We went from the constant functions
that always returns y to the identity function. To avoid this problem, we consider the α-
equivalence which put into relation terms with different bounded variables, for instance
we can say that λx.x ≡α λz.z or that (λx.t) ≡α (λy.t[x← y]). It allows us to work up to
renaming of bound variables. In order to avoid conflicts between variables we will always
work up to α-conversion and use Barendregt’s convention [Bar84, p.26] which consists in
keeping all bound and free variables names distinct, even when this remains implicit. The
β-reduction is then defined using the evaluation context as C[(λx.t)u] →β C[t[x ← u]].
The λ -calculus, with β-reduction is Turing Complete.

An important property is that the β-reduction is confluent : if a term t can be reduced
in two different ways by the β-reduction into terms t1, t2, there always exists another
term t′ such that t1 and t2 reduce to t3. The typing system ensures us that when a term
reduces, it keeps the same type and that well-typed terms always terminate: there is no
infinite sequence of reduction. For instance, the term Ω = (λx.xx)(λx.xx) is ill-typed
and its reduction does not terminate: Ω→β xx[x← (λx.xx)] = (λx.xx)(λx.xx)
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Example 3.1.1. Take the function that takes two arguments x and y and returns the
second argument while erasing the first one: λx.λy.y and applying it to any two argu-
ments t, t′, we get: ((λx.λy.y)t)t′ →β (λy.y[x← t])t′ = (λy.y)t′ →β y[y ← t′] = t′

Example 3.1.2 (Booleans values in the λ -calculus). We can define the two truth values
True (tt) and False (ff) as λx.λy.x and λx.λy.y and the Boolean operation AND as
λx.λy.x y ff.

To give a few intuitions, consider AND tt ff: then

(λx.λy.x y ff) tt ff→β (λy.tt y ff) ff→β tt ff ff

= (λx.λy.x) ff ff→β (λy.ff) ff→β ff

and AND tt tt:

(λx.λy.x y ff) tt tt→β (λy.tt y ff) tt→β tt tt ff

= (λx.λy.x) tt ff→β (λy.tt) ff→β tt

Other Boolean operations such as the disjunction, negation, etc. can also be defined in
the λ -calculus.

3.1.2. Logic

Logic and Proof Theory is the study of mathematical proof and mathematical reasoning.
A logical system is made of formulas, allowing one to express logical statements and of
inference rules, allowing to reason, and prove, said statements. In a logical system,
one is interested in proof trees. A proof tree is a tree where the leafs are formulas and
the internal nodes are inference rules. The root of the tree is the formula we want to
prove and the leafs are formulas which are always considered provable, called axioms.
In this chapter, we present a fragment of the intuitionistic sequent calculus LJ, that we
will also call LJ by abuse of notation. Formulas are builds upon connectives between
atoms. Usual connectives feature the negation, conjunction, disjunction and implication,
respectively noted ¬,∧,∨,→. Hence, given an infinite set of atoms {p, q, . . . } the syntax
of formulas is defined as:

A,B ::= p | ¬A | A ∧B | A ∨B | A→ B

Then, a proof of some formula A, under a set of assumptions A1, . . . , An is noted as
A1, . . . , An ` A. The left-hand side of the sequent (`) is called the context and is
defined as ∆ ::= ∅ | A,∆ where the comma stands for the union. We only allow to have
at most one formula on the right-hand-side of the sequent. A sequent A1, . . . , An ` B
should be read as A1 ∧ · · · ∧An → B, meaning that the formulas on the left side of the

37



Chapter 3. Proof Theory & The Curry Howard Isomorphism

∆, A ` A ax
∆ ` B ∆, B ` A

∆ ` A cut

∆, Ai ` C
∆, A1 ∧A2 ` C

∧iL, i ∈ {1, 2}
∆ ` A ∆ ` B

∆ ` A ∧B ∧R

∆, A ` C ∆, B ` C
∆, A ∨B ` C ∨L ∆ ` A

∆ ` A ∨B ∨
1
R

∆ ` B
∆ ` A ∨B ∨

2
R

∆ ` A ∆, B ` C
∆, A→ B ` C

→L
∆, A ` B

∆ ` A→ B
→1
R

∆ ` B
∆ ` A→ B

→2
R

∆ ` A
∆,¬A `

¬L
∆, A `
∆ ` ¬A

¬R

Figure 3.1.: Rules of LJ

sequent are put in conjunction and should imply the formula from the right hand side
of the sequent.

The rules of the logic are given in Figure 3.1

Among the rules, the one of particular interest is the cut rule, it says that in order to
prove some formula A, one can first start by proving B, and then use the hypothesis
B in order to prove A. It corresponds to the use of a lemma in a mathematical proof.
However, the use of the cut rule can lead to superflous information. Consider a proof π
of some formula A, one can then consider the proof:

π
` A A ` A ax

` A cut

The use of the cut and axiom rules are superflous: they make a useless detour in or-
der to prove A. This led to the notion of proof simplification, or cut-elimination by
Gentzen [Gen35]: if there exists a proof π of some ∆ ` A, then there exists a proof π′

of ∆ ` A without cuts. This is an important result: it implies consistency, which says
that one cannot prove the empty statement.
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For instance, a rule of the cut-elimination is:

π
` A A ` A ax

` A cut  
π
` A

3.1.3. Curry-Howard

s....
A ` B

t....
` A

` B cut

Figure 3.2.: Modus Ponens

Computation and logic are two faces of the same coin. For instance, consider a proof s of
A→ B and a proof t of A. With the logical rule Modus Ponens one can construct a proof
of B: Figure 3.2 features a graphical presentation of the corresponding proof. In the
Curry-Howard correspondence [Cur34; How80] types correspond to formulas and pro-
grams (terms) to proofs, while program evaluation is mirrored with proof simplification
(the so-called cut-elimination).

The Curry-Howard correspondence formalizes the fact that the proof s of A→ B can be
regarded as a function —parametrized by an argument of type A— that produces a proof
of B whenever it is fed with a proof of A. Therefore, the computational interpretation
of Modus Ponens corresponds to the application of an argument (i.e. t) of type A to
a function (i.e. s) of type A → B. When computing the corresponding program, one
substitutes the parameter of the function with t and get a result of type B. On the
logical side, this corresponds to substituting every axiom introducing A in the proof s
with the full proof t of A. This yields a direct proof of B without any invocation of the
“lemma” A→ B.

Paving the way toward the verification of critical software, the Curry-Howard corre-
spondence provides a versatile framework. It has been used to mirror first and second-
order logics with dependent-type systems [BC13; Ler09], separation logics with mem-
ory-aware type systems [Rey02; Jun+17], resource-sensitive logics with differential pri-
vacy [Gab+13], logics with monads with reasoning on side effects [Swa+16; Mai+19],
classical logic [Gri89], etc.

3.2. Linear Logic

Linear Logic, introduced by Girard [Gir87] is a resource sensitive logic in which formulas
cannot be duplicated nor erased at will and which embed both classical and intuitionistic
logic. Linear Logic was discovered by the study of the semantics of system F with
coherent spaces, where the intuitionistic arrows A → B was decomposed into !A( B.
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In this decomposition, !A (of course A) tells you that you can duplicate A as many times
as you want and A( B is a function that uses its argument exactly once.

The syntax of the formulas of Linear Logic is given by:

A,B ::= 1 | ⊥ | A⊗B | A`B Multiplicative Fragment

000 | > | A⊕B | A&B Additive Fragment

!A | ?A Exponential Fragment

Linear Logic admits several fragments of interests among which:

• Multiplicative Linear Logic (MLL): consists of the syntax whose connectors are
⊗,` and its units 1 and ⊥.

• MALL (Multiplicative Linear Logic): is MLL with the additives connectives ⊕ and
& and their unit 000,>.

• MELL (Multiplicative Exponentials Linear Logic): consist of MLL with the expo-
nential connectives !, ?.

Finally, the formulas come with an involution operation for negation, noted A⊥ defined
by:

1⊥ = ⊥ (A⊗B)⊥ = A⊥ `B⊥

000⊥ = > (A⊕B)⊥ = A⊥ &B⊥

` A⊥, A
id

` ∆, A ` Γ, A⊥

` ∆,Γ
cut

` ∆
` ⊥,∆ ⊥ ` 1 1

` A,B,∆
` A`B,∆

` ` A,∆ ` B,Γ
` A⊗B,∆,Γ ⊗

` A,∆ ` B,∆
` A&B,∆

&
` Ai,∆

` A1 ⊕A2,∆
⊕i i ∈ {1, 2} ∆

` ∆,⊥ ⊥

` A, ?∆

` !A, ?∆
!

` A,∆
` ?A,∆

?d
` ?A, ?A,∆

` ?A,∆
?c

` ∆
` ?A,∆

?w

Figure 3.3.: Rules of Linear Logic.
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Remark 3.2.1. Usually, Linear Logic is presented in a two-sided way where sequents are
of the form ∆ ` Γ and come with twice as many rules (for rules that are applied on the
right-hand-side or on the left-hand-side of the sequent). This is closer to the formalism
of LJ. One can go from the two-sided representation to the one-sided representation by
applying the negation on the context ∆, i.e.: ∆ ` Γ ` Γ,∆⊥.

For example, in the two-sided version of Linear Logic, the rules for the & becomes:

Γ ` A Γ ` B
Γ ` A&B

&R
Γ, Ai ` C

Γ, A1 &A2 ` C
&i
L, i ∈ {1, 2}

which matches the rule ∧R and ∨iL. This comparison can be done with the other additive
connectives of Linear Logic. For the multiplicative connectives, there exists a multi-
plicative version of LJ that requires structural rules, that are matched by the exponential
connectives. More information can be found in [Lau11].

Finally, Linear Logic comes with cut-elimination rules (also called proof simplification)
given in Figure 3.4 where a double bar means that we apply the same rule multiple
times. The cut-elimination also comes with some commutation rules which allows to
commute some inference rules below a cut. We do not give all the rules, but for example
we have:

` C,A,B,∆ `
` C,A`B,∆ ` C⊥,Γ

cut
` A`B,∆,Γ

 

` C,A,B,∆ ` C⊥,Γ
cut

` A,B,∆,Γ `
` A`B,∆,Γ

Linear Logic enjoys the cut-elimination theorem: given some proof
π
` ∆ with cuts, there

exists a proof
π′

` ∆ without cuts.

From a Curry-Howard point of view, the Multiplicative fragment of Linear Logic (MLL)
correspond to the linear λ -calculus while MELL correspond to the typed λ -calculus [Gir87].
One can then translate a typing derivation x1 : A1, . . . , xn : An ` t : B into the for-
mula ?(A∗1)⊥, . . . , ?(A∗n)⊥, B∗, where A∗ is defined on the base type as the identity and
(A → B)∗ = !A∗ ( B∗. Following this perspective, linear logic is a good fit for the
study of λ -calculus and their extensions with a well-studied semantics [Mel09].
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ax
` A,A⊥ ` A,Γ

cut
` A,Γ

 ` A,Γ

` Γ, A ` ∆, B
⊗

` Γ,∆, A⊗B
` Ξ, A⊥, B⊥ `
` Ξ, A⊥ `B⊥

cut
` Γ,∆,Ξ

 ` Γ, A

` ∆, B ` Ξ, A⊥, B⊥
cut

` ∆,Ξ, A⊥
cut

` Γ,∆,Ξ

` Γ, A1 ` Γ, A2
&

` Γ, A1 &A2

` ∆, A⊥k ⊕k
` ∆, A⊥1 ⊕A⊥2

cut
` Γ,∆

 
` Γ, Ak ` ∆, A⊥k

cut
` Γ,∆

for k ∈ {0, 1}

` ?Γ, A
!

` ?Γ, !A

` ∆
w

` ∆, ?A⊥
cut

` ?Γ,∆

 
` ∆

w
` ?Γ,∆

` ?Γ, A
!

` ?Γ, !A

` ∆, A⊥
d

` ∆, ?A⊥
cut

` ?Γ,∆

 
` ?Γ, A ` ∆, A⊥

cut
` ?Γ,∆

` ?Γ, A
!

` ?Γ, !A

` ∆, ?A⊥, ?A⊥
c

` ∆, ?A⊥
cut

` ?Γ,∆

 

` ?Γ, A
!

` ?Γ, !A

` ?Γ, A
!

` ?Γ, !A ` ∆, ?A⊥, ?A⊥
cut

` ?Γ,∆, ?A⊥
cut

` ?Γ, ?Γ,∆
c

` ?Γ,∆

` ?Γ, A
!

` ?Γ, !A

` ?∆, ?A⊥, B
!

` ?∆, ?A⊥, !B
cut

` ?Γ, ?∆, !B

 

` ?Γ, A
!

` ?Γ, !A ` ?∆, ?A⊥, B
cut

` ?Γ, ?∆, B
!

` ?Γ, ?∆, !B

1
` 1

` Γ ⊥
` Γ,⊥

cut
` Γ

 ` Γ

Figure 3.4.: Cut-elimination rules
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3.2.1. Proof Nets

In Linear Logic, some rules are said to be invertible: they do not change the provability
of the sequent. An instance of such a rule is the `: a ` rule can always be applied
before, or after, another rule. This cause of problem of identifying multiple proofs of the
same formula that are equivalent up to some rule permutation. To solve this problem,
Linear Logic comes with another syntax for proofs: a graphical language called proof
nets [Gir87]. Proofs nets are defined in two steps: first, the general graphical language
call proof structures and then a validity criterion that restraint the proof structure to
only those that correspond to real proofs of linear logic. As with linear logic, there
exists multiple kinds of proof nets, depending on which fragment of linear logic we are
interested in. Most notably, the additive fragment as with the units have always created
problems in defining a proper validity criterion that matches properly the cut-elimination
procedure of their sequent-calculus counterpart. For the multiplicative fragment, the
proof-structures are defined as:

{
ax

A⊥ A
, cut
A A⊥,

A B

A⊗B

, `
A B

A`B

}

The constructions of the proof-structures correspond respectively to the axiom, cut,
tensor and par rule of MLL. Then, each derivation judgement from MLL can be sent
into a proof structure. As discussed, not every proof structure is a proof net, for instance
the following proof structure does not correspond to any proof of linear logic:

ax

AA⊥

A⊥⊗A

This is due to the fact that the tensor has two premisses and in this proof structure it
only has one. Therefore, proof nets come with a validity criterion. We do not go into
all the details as it is not necessary for this thesis, but intuitively the validity condition
considers a switching function S : ` → {l, r} which consist in removing one of the
two input wire of every ` node in the proof structure. The obtained graph is called a
switching graph and then, the validity criterion require that every switching graph that
can be obtained from a proof structure is a connected tree.

Similarly, the cut-elimination procedure can also be defined inside proof nets:

`
A⊥`B⊥A⊗B

cut

A B A⊥B⊥

cut

A A⊥

cut

B B⊥

→

ax

A A⊥

cut
A → A

Finally, one can show that cut-elimination holds inside proof nets and that any proof of
linear logic gives a proof net, and that every proof net is the image of a proof [Gir87;
Lau11]. More details can be found in [Lau11].
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MELL Proof Nets MELL allows one to encode all of the simply typed λ -calculus,
duplication of a λ -term is represented using exponentials, which also handle erasure. To
make proof nets for MELL, one then needs a tool to represent what can, and cannot, be
duplicated or erased. For that, the most common tool is exponential boxes. In MELL
Proof Nets, proofs nets can be put inside boxes, which indicate that they can be duplicate
or erased under certain conditions. The erasure is made through weakening and may
create a situation where the proof net is disconnected. This creates problems in defining
the validity condition. One solution would be to consider MELL + Mix, another way
is through the use of jumps, connecting weakening to a correct proof net. Once again,
more details can be found in [Lau11].

MALL Proof Nets On the additive side, correctness criterion becomes much harder.
The main criterion of MALL Proof Nets [HVG03] works with additive resolutions: delet-
ing one branch of each ⊕,&-node and through a notion of toggling of &-node. A toggle-
& creates some kind of dependency between himself and other part of the proof-nets
through jump-edges. One then needs to check a similar criterion to the MLL criterion:
toggled & must not be present in a cycle of the proof-net with the added jump-edges.

3.2.2. Geometry of Interaction

Proof Nets, in particular MLL ones, comes with another form of semantics called the
Geometry of Interaction (GoI) [Gir89b; Gir89a; Gir88; Gir95; Gir06; Gir11; Gir13]. The
Geometry of Interaction can be seen in two ways:

• As a wave-style semantics where the proof net is seen as a global operator;

• as a particle-style semantics (also called token-machine) where tokens travel through
the proof net, computing a global operator in a local manner.

Both view are related through the Execution Formula: a new, purely computational way
to view the cut-elimination in an abstract way. In this thesis, we follow the particle-
style approach of GoI, following the notion of GoI has a token-based automaton [DR99;
AL95]. In this setting, the flow of tokens inside a proof net, seen as a graph, characterizes
an invariant of the proof: its computational content. A token carry a state, which is
being updated as the token goes up or down through nodes of the proof net. In this
setting, applying the execution formula n times can be seen as moving the token n times
through the proof net, and hence, by iterating the execution formula, the token always
ends up leaving the proof net. Then, proof nets are seen as a global operation on the
state space of tokens. For the case of MLL, this corresponds simply to a permutation.
Due to the lineary of the logic and the fact that each operation is forward and backward
deterministic (each step corresponding to simply going down, or up, on the right, or left,
side of a node), each step of the token machine is reversible.
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3.3. Linear Logic & Quantum Computation

The fact that linear logic doesn’t allow for duplication or erasure of data is very rem-
iniscent of the constraints of quantum computation. Both linear logic and quantum
computation features a tensor, and the exponential can be used for typing classical data,
which can be duplicated and erased at will. Multiple typed languages have been devel-
oped, along with their semantics in such a setting [PSV14; Gre+13; SV+09; Lee+21].
More related to proof nets, major works in quantum computation has taken inspira-
tion from MLL Proof Nets, most notably the Categorical Quantum Theory [] and the
ZX-Calculus [CD11] that grew out of it. However, the connection is not perfect as in
quantum computation the tensor is self-dual and so the correctness condition of proof
nets is no longer relevant, also there is no reason for the obtained graph to be acyclic
as the trace is a fundamental structure. Finally, proof nets are oriented, which is no
longer the case in the ZX-Calculus as all objects are self-dual. More details can be found
in [AD06; Dun06; Dun09; Dun04]. Geometry of Interaction has also been applied in
the context of quantum computation, both in a categorical setting [HH16] or in token-
based-GoI setting such as in [Dal17; LZ15; DLF11], where the tokens are seen as qubits
flowing inside a higher-order term, computing a quantum circuit. In this setting, tokens
require a notion of synchronization: a token arriving at an input of a gate is blocked
until all the inputs of the gates are populated by a token, at which point all the tokens
go through at once (while obviously changing the state).

3.4. Infinitary Linear Logic : µMALL

Functional programming languages often feature the ability to encode inductive types
and coinductive types as data structure. On a Curry-Howard point of view, how inductive
and coinductive types and reasoning are related to Linear Logic is not directly clear.

From a proof theory point of view, inductive and coinductive reasoning have been studied
for a long time. Most notably by the µ-calculus [DR79; Par69; Koz83]: an extension of
modal logic with fixed point operator. Modal logic was extended with a new formula of
the form µX.A where A is a formula, along with the dual operator νX.A. Already at
this point, the µ and ν operator described the least and greatest fixed point operator.
By the Curry-Howard correspondence, those new logics helped in modelling possibly
infinite computation. Among those logics and derivations, circular proofs [San02; FS13],
infinite proofs with finitely many subtrees, are in particular interest to represent recursive
programs. As we are concerned with the particular case of Linear Logic, we look at the
logic µMALL. In his PhD, Baelde [Bae08] looked at adapting linear logic with formulas
with fixed points and showed the cut-elimination and the equivalence of provability with
regards to higher order linear logic. Finally, Amina et al [BDS16; Dou17; BDS16] looked
more precisely at the infinitary aspects of the derivation with a proof-theorical approach,
defining validity criterions and their properties.
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...
ν

` νX.X

...
µ

µX.X ` ψ
cut

` ψ

Figure 3.5.: Degenerated proof

3.4.1. Background on µMALL

The logic µMALL [Bae12; BDS16] is an extension of the additive and multiplicative
fragment of linear logic [Gir87]. The syntax of linear logic, where formula are de-
noted by ψ, φ, is extended with the formulas µX.ψ and its dual νX.ψ (where X is
a type variable occurring in ψ), which can be understood at the least and greatest
fixed points of the operator X 7→ ψ. These permits inductive and coinductive state-
ments. One can for instance define the type of natural numbers as µX.1 ⊕ X or of
lists of type ψ as [ψ] = µX.1 ⊕ (ψ ⊗ X) or of streams of type ψ as νX.ψ ⊗ X. Note
that our system only deals with closed formulas. The syntax of formulas is ψ, φ ::=
α | α⊥ | µX.ψ | νX.ψ | X | ⊥ | 1 | ψ`φ | ψ⊗φ | 000 | > | ψ⊕φ | ψ&φ.

Where α ∈ A, an infinite set of atoms and X,Y, · · · ∈ V an infinite set of fixed point
variables.

Definition 3.4.1 (Negation). The negation of a formula, ψ⊥ is the involution on for-
mulas satisfying α⊥⊥ = α, (ψ ` φ)⊥ = (ψ⊥ ⊗ φ⊥), (ψ ⊕ φ)⊥ = ψ⊥ & φ⊥,⊥⊥ = 1,>⊥ =
000, (νX.ψ)⊥ = µX.ψ⊥, X⊥ = X. Having X⊥ = X is harmless since we only deal with
closed formulas.

Following the notation of one-sided sequents, the rules for the µ and ν connectives are:

` ψ[X ← µX.ψ],∆

` µX.ψ,∆
µ

` ψ[X ← νX.ψ],∆

` νX.ψ,∆ ν

The logic allows for the constructions of infinite derivations, called pre-proofs. Their
name comes from the fact that, if we consider that any derivation is a proof, then we can
prove any statement ψ using the cut-rule, as shown in Figure 3.5. This is why µMALL
comes with a validity criterion, separating pre-proofs from actual proofs. µMALL also
comes with a boolean semantics [BDS16; Dou17] on formulas, noted J−K, giving us
information on whenever or not a formula can be deemed provable. They proved that if
a sequent ` Γ is provable then JF K = tt for some formula F ∈ Γ.

In order to distinguish between pre-proofs and actual proofs, µMALL comes with validity
criterion on derivations: mainly, whether or not each infinite branch can be justified by
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a form of coinductive reasoning. The criterion also ensures that the cut-elimination
procedure holds. The criterion is based on Girard’s Geometry of Interaction where
some data (namely a thread) move through the derivation, following a subformula and
collecting information (its weight). Then, one can analyse the collected information
and determine whenever or not it is valid. More formally, a thread [BDS16; Bae+20] is
an infinite sequence of tuples of formulas, sequents and directions (either up or down)
written (F ;` ∆; d). Intuitively, these threads follow some formula starting from the
root of the derivation and start by going up. The thread has the possibility to bounce
on axioms and cuts and change its direction, either going back-down on an axioms or
back-up on a cut. A thread will be called valid when it is non-stationary (does not follow
a formula that is never a principal formula of a rule), and when in the set of formulas
appearing infinitely often, the minimum formula (according to the subformula ordering)
is a ν formula. For the multiplicative fragment, we say that a pre-proof is valid if for
all infinite branches, there exists a valid thread, while for the additive part, we require
a notion of additive slices and persistent slices, and we ask that all persistent slices are
valid in the sence of the multiplicative fragment.

Multiple validity criterion exists, some covering more derivation than others. One thing
that has to be noticed is that, even though a valid proof is productive in the sense of the
cut-elimination, not all productive derivation are valid proofs. One on hand [NST18]

introduced a local condition for circular proofs validity. In their system µMALL

y

, every
valid proof is a valid proof in µMALL, while the conserve is not true: interleaving of fixed-
point and back-edge are not captured by their system. The system of thread previously
mentioned is developed in [BDS16] and extended in [Bae+20] and called the bouncing-
thread-validity. Compare to [NST18] the criterion is a global one that looks at infinite
threads. This is the criterion that we present here and that we will use in Chapter 4.

3.4.2. Bouncing Validity

We consider sequents to work with sets of named formulas, also called formula occur-
rences. The idea is that each formula is attached a unique address, when a rule is
applied to said formula, its subformulas will extend their addresses, corresponding to
their provenance by {l, r, i} (for left, right, inside).

Definition 3.4.2 (Addresses). Let Afresh be an infinite set of atomic adddresses and

A
⊥
fresh = {α⊥ | α ∈ Afresh} and Σ = {l, r, i}. An address is a word of the form α · x

where α ∈ Afresh ∪ A⊥fresh and x ∈ Σ∗. Given two addresses α′, α we say that α′ is a
sub-address of α when α is a prefix of α′, noted a v α′. Two addresses are disjoint if
they are incompatible with regard to v.

We can now define the notion of formula occurrence F,G, . . . as a simple pair (ψ, α)
where ψ is a formula and α is an address, noted F = ψα. We say that two formula
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F ≡ G
` F⊥G

id
` ∆, F ` Γ, F⊥

` ∆,Γ
cut

` ∆
` ⊥,∆ ⊥

` 1 1
` F,G,∆
` F `G,∆

` ` F,∆ ` G,Γ
` F ⊗G,∆,Γ ⊗

` F,∆ ` G,∆
` F &G,∆

&
` Fi,∆

` F1 ⊕ F2,∆
⊕iR i ∈ {1, 2} ∆

` ∆,⊥ ⊥

` F [X ← µX.F ],∆

` µX.F,∆
µ

` F [X ← νX.F ],∆

` νX.F,∆ ν

Figure 3.6.: Rules for µMALL.

occurrences are structurally equivalent, noted ψα ≡ φβ when the underlying formulas
are the same: ψ = φ.

As we will work with formula occurrences, logical connectives need to be lifted on oc-
currences:

Definition 3.4.3 (Logical Connectives with occurrences).

• For any # ∈ {⊗,⊕,`,&} if F = ψαl and G = φαr then F#G = (ψ#φ)α.

• For any # ∈ {µ, ν} if F = ψαi then #X.F = (#X.ψ)α.

The derivation rules are shown in Figure 3.6. They define a relation ` ∆ on a set of
formula occurrences defined co-inductively. For each rule the assumptions are above the
line while the conclusion is under. In the rules, the comma stands for the disjoint union.
Given a rule, we call the formula to which the rule is applied to the active formula or
principal formula. Given a sequent s in a pre-proof π, we denote by premiss(s) the set
of premisses of the rule of conclusion s in π. The cut-elimination rules for µMALL are
the same as the one presented in Figure 3.4 with the additional rule

` F⊥[X ← νX.F⊥],Γ
µ

` µX.F⊥,Γ
` F [X ← νX.F ],∆

ν
` νX.F,∆

cut
` ∆,Γ

 
` F⊥[X ← νX.F⊥],Γ ` F [X ← νX.F ],∆

cut
` ∆,Γ

Derivations can be potentially non-well-founded trees: they are not necessarily finite as
we can for instance consider the formula µX.X and apply the rule µ an infinite number
of times.
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Example 3.4.4. Taking the natural number N = µX.1⊕X, one can define the proof of
0 and of n as:

π0 =
` 1 1

` 1⊕ N ⊕
1

` µX.1⊕X
µ

πn =

πn−1

` N
` 1⊕ N ⊕

2

` µX.1⊕X
µ

As mentioned earlier, not all derivation are indeed proofs. To answer this problem,
µMALL comes with a validity criterion for derivations. This makes uses of the notion
of bouncing-threads: paths that travel along the infinite derivation and collect some
information along the way. In order to formally define bouncing-threads we first need
to introduce some notations: given an alphabet Σ, we denote by Σ∞ the set of infinite
words over Σ and Σω = Σ∗ ∪ Σ∞. The letter % will denote ordinals in ω + 1. Finally,
we use a special concatenation: given u = (ui)i≤n≤ω and v = (vi)i∈% such that un = v0,
we define u � v as the concatenation of u and v without the first element of v, i;e :
u · (vi)i∈%\{0}. For instance aab� bac = aabac.

We begin with the definition of a pre-threads : the basic construction of a path along
an infinite tree that follows a formula occurrence. Then, we only look at some specials
ones called threads, and finally define the notion of valid thread that validates an infinite
derivation as being a proof. A pre-proof is a proof whenever all of its infinite branches
are valid.

Definition 3.4.5 (Pre-thread). A pre-thread is a sequence (Fi, si, di)i∈% of tuples of a
formula, a sequent and a direction d ∈ {↑, ↓} such that for all i ∈ % and i+ 1 ∈ % one of
the following holds:

• di = di+1 =↑, si+1 ∈ premiss(si) and Fi+1 v Fi

• di = di+1 =↓, si ∈ premiss(si+1) and Fi v Fi+1

• di =↓, di+1 =↑, si and si+1 are the two premisses of the same cut rule and Fi = F⊥i+1

• di =↑, di+1 =↓ and si = si+1 = {` Fi, Fi+1} is the conclusion of an axiom rule.

As mentioned before, a pre-thread follows a subformula inside a derivation, going up or
down and bouncing back on axioms rules and cut rules. We can then define a notion
of weight on a pre-thread: a potentially infinite word over {l, r, i, l, r, i,W,A, C} where
l, r, i stands for being on the left, right or inside a subformula while the pre-thread is
going up, l, r, i is similar but while the pre-thread is going down and W,A and C stands
respectively for wait, axiom and cut : if a pre-thread is going up on a formula that is not
the principal formula, then the weight becomes W, and when the pre-thread bounces
back on an axiom (resp. a cut), its weight becomes A (resp. C).
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Definition 3.4.6 (Weight of a pre-thread). Let t be a pre-thread, the weight of t, noted
w(t) is a word over (wi)i∈%{l, r, i, l, r, i,W,A, C}∞ such that for every i ∈ % one of the
following holds:

• wi = x if Fi = ψα and Fi+1 = φαx for x ∈ {l, r, i}

• wi = x if Fi = ψαx and Fi+1 = φα for x ∈ {l, r, i}

• wi = A if di =↑ and di+1 =↓ (corresponding to an axiom rule)

• wi = C if di =↓ and di+1 =↑ (corresponding to a cut-rule).

• wi = W if Fi = Fi+1 (corresponding to the fact that a rule is not applied to the
formula followed by the pre-thread).

As mentioned earlier we are not interested in every single pre-thread, but only those
that follow a certain pattern (one that matches with the cut-elimination procedure).

We define two set of words B and H inductively as follows:

B ::= C | BW∗AW∗B | xW∗BW∗x

H ::= ε | AW∗B

A finite pre-thread t is called a b-path if w(t) ∈ B, and it is called a h-path if w(t) ∈ H.

We are now ready to define the notion of thread:

Definition 3.4.7 (Thread). A pre-thread t is a thread when it can be decomposed as⊙
i∈%+1(Hi � Vi) where for all i ∈ %+ 1:

• w(Vi) ∈ {l, r, i,W}∞, and it is non-empty if i 6= %

• w(Hi) ∈ H, and it is non-empty if i 6= 0

The decomposition can be read as a thread initially going up, accumulating some debt
in the form of the alphabet {l, r, i} that will need to be repaid by their opposite {l, r, i}
when going down after meeting an axiom until it reaches a cut. Those dual alphabets
correspond to steps of the cut-elimination: making sure that the correct formulas will
at some point interact by a cut.

Such a decomposition is unique, and we call (Vi)i∈%+1 the visible part of t and (Hi)i∈%+1

the hidden part. A thread is stationary when its visible part is a finite sequence (of finite
words) or when there exists k ∈ %+ 1 such that w(Vi) ∈ {W}∞ for all k ≤ i ∈ %+ 1.

We can now define the validity criterion on threads:
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Definition 3.4.8 (Valid threads). If we take the sequence of formulas followed by a non-
stationary thread on its visible part and skipping the steps corresponding toW weights, we
obtain an infinite sequence of formulas where each formula is an immediate subformula
or an unfolding of the previous formula. The formulas appearing infinitely often admit a
minimum with regard to the subformula ordering, such a formula is the minimal formula
of the thread.

A non-stationary thread is valid if its minimal formula is a ν formula.

We then need to import this notion of valid threads to pre-proofs. For this we split it
into two cases: the first one being for µMLL: the multiplicative fragment of µMALL, and
then for the whole of µMALL.

Definition 3.4.9 (Validity of µMLL). A pre-proof of µMLL is valid if every infinite
branch is valid.

We say than an infinite branch β is valid if there exists a valid thread starting from one
of its sequents, whose visible part is contained in this branch.

Example 3.4.10. The infinite derivation

...
` µX.X

µ

` µX.X
µ

is not valid as the only thread
t = (µX.X;` µX.X; ↑)∞ have for weight i∞ which is stationary.

This notion is not sufficient for the whole of µMALL mainly due to the duplication of
proofs that arise from the cut-elimination of the & connective (see Figure 3.4). We need
to take into accounts slices, we consider two new rules :

` ∆, F

` ∆, F &G
&1

` ∆, G

` ∆, F &G
&2

Now, given a pre-proof π of µMALL we consider the set of its slices Sl(π), defined
corecursively by:

Sl


π1

` ∆, F1

π2

` ∆, F2

` ∆, F1 & F2
&

 ,


π′i
` ∆, Fi

` ∆, F1 & F2
&i | i ∈ {1, 2}, π′i ∈ Sl(πi)


Equation Section 3.4.2 means that for each rule & in π, we consider the two proofs where
the rule & is replaced with &1 and &2, similarly to the switching of proof nets.

Definition 3.4.11 (Persisting slice). Given some slice, a rule &i of principal formula
F1 &F2 is well-sliced if no b-path starting from F1 &F2 ends in a formula F⊥1 ⊕F⊥2 that
is the principal formula of a ⊕j rule with i 6= j. A slice is persistent if all its &i are
well-sliced.
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Remark 3.4.12. An additional rule is needed to account for what happens when a πi
and a ⊕ interact the cut-elimination. But as we just want to define the validity criterion,
we do not detail the additional rule. The interested reader can always refer to [Bae+20].

Definition 3.4.13 (Persistent slice validity). A persistent slice is valid if it is valid in
the sense of µMLL.

Definition 3.4.14 (µMALL validity). A pre-proof of µMALL is valid if all its persistent
slices are valid.

Example 3.4.15. Remember that N = µX.1 ⊕ X. We can then define the successor
function as:

πsucc =

1
` 1 ⊕1

` 1⊕ N
µ

` N ⊥
1 ` N

πsucc

N ` N ⊕2

N ` 1⊕ N
µ

N ` N
&

1⊕ N ` N
µ

N ` N

In this derivation, all the slices from &1 are finite derivation. The only infinite derivation
becomes the one where all occurrences of & becomes &2. In this infinite branch we have
two threads: the one on the left and the one on the right of the sequent.

The left-thread tl have for weight (irWW )∞ and the set of its formulas encountered
infinitely often are {νX.⊥ & X,⊥ & νX.⊥ & X}. The smallest formula is a ν formula,
validating the branch.

On the other hand, the right-thread has weight (WWir)∞ and for smallest formula a
µ formula and hence is not valid. Since we only require one valid thread per infinite
branch, the whole derivation is proof.

3.4.3. Circular Representation of Derivations

Among the infinite derivations that µMALL offer we can look at the circular ones: an
infinite derivation is circular if it has finitely many different subtrees. The circular
derivation can therefore be represented in a more compact way with the help of back-
edges: arrows in the derivation that represent a repetition of the derivation. Derivations
with back-edges are represented with the addition of sequents marked with a back-edge

label, noted `f , and an additional rule, ` Σ
be(f)

, which represents a back-edge pointing
to the sequent `f . We take the convention that from the root of the derivation from to
rule be(f) there must be exactly one sequent annotated by f .
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While a circular proof has multiple finite representations (depending on where the back-
edge is placed), they can all be mapped back to the same infinite derivation via an
infinite unfolding of the back-edge and forgetting the back-edge labels:

Definition 3.4.16 (Unfolding). We define the unfolding of a circular derivation P with
a valuation v from back-edge labels to derivations by:

• U
(
P :

P1, . . . , Pn
` Σ

r
, v

)
=

U(P1, v), . . . ,U(Pn, v)

` Σ
r

• U(be(f), v) = v(f)

• U
(
P :

P1, . . . , Pn

`f Σ
r , v

)
=

(
π =

U(P1, v
′), . . . ,U(Pn, v

′)

` Σ
r

)
with v′(g) = π if

g = f , else v(g).

Example 3.4.17. On the left, an infinite derivation and on the right two circular rep-
resentation of the left-most derivation. Notice that the unfolding of the second and third
derivation are equal to the first derivation.

...
µ

` µX.X
µ

` µX.X

be(f)
`µX.X

µ
`f µX.X

be(f)
`µX.X

µ
` µX.X

µ
`f µX.X
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Chapter 4.

A Curry-Howard Correspondence for Linear,
Reversible Computation

Abstract

In this chapter, we present a linear and reversible programming language with
inductive types and recursion. The semantics of the language is based on pattern-
matching; we show how ensuring syntactical exhaustivity and non-overlapping of
clauses is enough to ensure reversibility. The language allows to represent any Prim-
itive Recursive Function. We then give a Curry-Howard correspondence with the
logic µMALL, that is linear logic extended with least fixed points allowing inductive
statements. The critical part of our work is to show how primitive recursion yields
circular proofs that satisfy µMALL validity criterion and how the language simulates
the cut-elimination procedure of µMALL.

References: Results of this chapter have been accepted in the paper Towards a
Curry-Howard Correspondence for Linear, Reversible Computation at CSL’23 and
accepted as a Work in Progress at RC’20 [CSV20].

4.1. Introduction

Reversible computation is a paradigm of computation which emerged as an energy-
preserving model of computation in which data is never erased [FT82] that makes sure
that, given some process f , there always exists an inverse process f−1 such that f ◦f−1 =
Id = f−1 ◦ f . Many aspects of reversible computation have been considered, such as
the development of reversible Turing Machines [AG11a; MY07], reversible programming
languages [JS14] and their semantics [CLV21; KAG17; KR21]. However, the formal
relationship between a logical system and a computational model has not been developed
yet.

While multiple reversible functional programming languages have been developed [YAG12;
TA15; JS14; SVV18; JKT18] featuring type systems, case-analysis and pattern-matching,
they most often lack a formal connection with logical systems. This chapter aims at
proposing a type system featuring inductive types for a purely linear and reversible
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language, together with a Curry-Howard correspondence with the logic µMALL. As re-
versible and linear computation make for a subset of quantum computation, this work
is a first step towards understanding purely quantum recursive types. We base our
study on the approach presented in [SVV18]. In this model, reversible computation is
restricted to two main types: the tensor, written A ⊗ B, and its neutral element 1,
and the co-product, written A ⊕ B. The former corresponds to the type of all pairs
of elements of type A and elements of type B, while the latter represents the disjoint
union of all elements of type A and elements of type B. For instance, a bit can be typed
with 1 ⊕ 1, where 1 is a type with only one element. The language in [SVV18] offers
the possibility to code isos —reversible maps— with pattern-matching. An iso is for
instance the swap operation, typed with A ⊗ B ↔ B ⊗ A. However, if [SVV18] hints
at an extension towards pure quantum computation, the type system is not formally
connected to any logical system.

The problem of reversibility between finite types of same cardinality simply requires to
check that the function is injective. That is no longer the case when we work with types
of infinite cardinality such as natural numbers.

The main contribution of this work is a Curry-Howard correspondence for a purely
reversible typed language in the style of [SVV18], with added generalized inductive
types and terminating recursion, enforced by the fact that recursive functions must be
structurally recursive: each recursive call must be applied to a decreasing argument.
We show how requiring exhaustivity and non-overlapping of the clauses of the pattern-
matching is enough to ensure reversibility and that the obtained language can encode any
Primitive Recursive function [RJ87]. For the Curry-Howard part, we capitalize on the
logic µMALL [BDS16; Bae12]: an extension of the additive and multiplicative fragment
of linear logic with least and greatest fixed points allowing inductive and coinductive
statements. This logic contains both a tensor and a co-product, and its strict linearity
makes it a good fit for a reversible type system. In the literature, multiple proofs systems
have been considered for µMALL, some finitary proof system with explicit induction
inferences à la Park [Bae12] as well as non-well-founded proof systems which allow to
build infinite derivations [BDS16; Bae+20]. In the former, the inference rule features
an invariant of the operator. While in the latter, no invariant is explicitly featured
in the proof system and one can consider infinite derivation, but then the obtained
logic is inconsistent and require a validity criterion. The present chapter focuses on
the latter. In general, an infinite derivation is called a pre-proof and is not necessarily
consistent. To solve this problem µMALL comes equipped with a validity criterion,
telling us when an infinite derivation can be considered as a logical proof. We show how
the syntactical constraints of being structurally recursive imply the validation of pre-
proofs. In [CLV21], together with Louis Lemonnier and Benôıt Valiron we also provided
a categorical semantics of a simplified version of the language presented in this chapter.
As it was the main work of Louis Lemonnier, we do not present it here, but the interested
reader can refer to [CLV21].
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Organization of the chapter The chapter is organized as follows: in Section 4.2 we
present the language, its syntax, typing rules and semantics and show that any function
that can be encoded in our language represents an isomorphism. In Section 4.3 we show
that our language can encode any Primitive Recursive Function [RJ87], this is shown
by encoding the set of Recursive Primitive Permutations [PPR20] functions. Then in
Section 4.4, we develop on the Curry-Howard Correspondence part: we show, given
a well-typed term from our language, how to translate it into a circular derivation of
the logic µMALL and show that the given derivation respects the validity condition and
how our evaluation strategy simulates the cut-elimination procedure of the logic. Finally,
in Section 4.5 we look at the expressiveness of the language if we remove the exhaustivity
and termination condition and show that we obtain Turing Completeness.

4.2. First-order Isos

Our language is based on the one introduced by Sabry et al [SVV18] which defines iso-
morphisms between various types, including the type of lists. We build on the reversible
part of the chapter by extending the language to support both a more general rewriting
system and more general inductive types. The language is defined by layers. Terms and
types are presented in Table 4.1, while typing derivations, inspired from µMALL, can be
found in Tables 4.2 and 4.3. The language consists of the following pieces.

Basic type. They allow us to construct first-order terms. The constructors injl and
injr represent the choice between either the left or right-hand side of a type of the
form A ⊕ B; the constructor 〈, 〉 builds pairs of elements (with the corresponding type
constructor ⊗); fold represents inductive structure of the types µX.A. A value can
serve both as a result and as a pattern in the defining clause of an iso. We write x1, . . . , xn
for 〈x1, 〈. . . , xn〉〉 or −→x when n is non-ambiguous and A1 ⊗ · · · ⊗An for A1 ⊗ (· · · ⊗An)
and An for A⊗ · · · ⊗A︸ ︷︷ ︸

n times

.

First-order isos. An iso of type A ↔ B acts on terms of base types. An iso is a
function of type A ↔ B, defined as a set of clauses of the form {v1 ↔ e1 | · · · | vn ↔
en}. In the clauses, the tokens vi are open values and ei are expressions. In order
to apply an iso to a term, the iso must be of type A ↔ B and the term of type A.
In the typing rules of isos, the ODA({v1, . . . , vn}) predicate (adapted from [SVV18] and
given in Table 4.4) stands for Orthogonal Decomposition and syntactically enforces the
exhaustivity and non-overlapping conditions on a set of well-typed values v1, . . . , vn of
type A. Exhaustivity for an iso {v1 ↔ e1 | · · · | vn ↔ en} of type A ↔ B means that
the expressions on the left (resp. on the right) of the clauses describe all possible values
for the type A (resp. the type B). Non-overlapping means that two expressions cannot
match the same value. For instance, the left and right injections injl v and injr v

′ are
non-overlapping while a variable x is always exhaustive. The typing conditions make
sure that both the left-hand-side and right-hand-side of clauses satisfy this condition.
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Its formal definition can be found in Table 4.3 where V al(e) is defined as V al(let p =
ω p′ in e) = V al(e), and V al(v) = v otherwise. These checks are crucial to make
sure that our isos are indeed reversible. One can note that the definition is sound, but
not complete: not every set of exhaustive and non-overlapping values satisfied the OD

predicate, but it captures enough for the expressivity results of Theorem 4.3.7. In the rule
ODA⊗B, we define S1

v and S2
v respectively as {w | 〈v, w〉 ∈ S} and {w | 〈w, v〉 ∈ S} and

π1(S) and π2(S) respectively as {v | 〈v, w〉 ∈ S} and {w | 〈v, w〉 ∈ S}. The construction
fix g.ω represents the creation of a recursive function, rewritten as ω[g ← fix g.ω] by the
operational semantics. Each recursive function needs to satisfy a structural recursion
criterion, formalized in Definition 4.2.2. It ensures that one of the input arguments
strictly decreases on each recursive call. Indeed, since isos can be non-terminating (due to
recursion), we need a criterion that implies termination to ensure that we work with total
functions. If ω is of type A↔ B, we can build its inverse ω⊥ : B ↔ A and show that their
composition is the identity. We recall that in order to avoid conflicts between variables,
we will always work up to α-conversion and use Barendregt’s convention [Bar84, p.26]
which consists in keeping all bound and free variables names distinct, even when this
remains implicit.

Convention 4.2.1. We assume that the type constructors are righ-associative, hence
fold injl x is fold (injl (x)).

The type system has two types of judgments: one for terms (noted ∆; Ψ `e t : A) and
one for isos (noted Ψ `ω ω : A ↔ B). In the typing rules, the contexts ∆ are sets of
pairs that consist of a term-variable and a base type, where each variable can only occur
once and Ψ is a singleton set of a pair of an iso-variable and an iso-type association.

Definition 4.2.2 (Structurally Recursive). Given an iso fix f.{v1 ↔ e1 | · · · | vn ↔ en}
of type A1 ⊗ · · · ⊗ Am ↔ C, it is structurally recursive if there is 1 ≤ j ≤ m such that
Aj = µX.B and for all i ∈ {1, . . . , n} we have that vi is of the form (v1

i , . . . , v
m
i ) such

that vji is either:

• A closed value, in which case ei does not contain the subterm f p;

• Open, in which case for all subterms of the form f p in ei we have p = (x1, . . . , xm)
and xj : µX.B is a strict subterm of vji .

Given a clause v ↔ e, we call the value vji (resp. the variable xj) the decreasing argument
(resp. the focus) of the structurally recursive criterion.

Example 4.2.3. The iso fix f.{x ↔ let y = f x in y} is not structurally recursive
while the one from Example 4.2.14 is.

Remark 4.2.4. As we are focused on a very basic notion of structurally recursive func-
tion, the typing rules of isos allow to have at most one iso-variable in the context,
meaning that we cannot have intertwined recursive calls.
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(Base types) A,B ::= 1 | A⊕B | A⊗B | µX.A
(Isos, first-order) α ::= A↔ B

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉 | fold v
(Pattern) p ::= x | 〈p1, p2〉
(Expressions) e ::= v | let p1 = ω p2 in e

(Isos) ω ::= {v1 ↔ e1 | · · · | vn ↔ en} | fix f.ω | f
(Terms) t ::= () | x | injl t | injr t | 〈t1, t2〉 |

fold t | ω t | let p = t1 in t2

Table 4.1.: Terms and types

∅; Ψ `e () : 1 x : A; Ψ `e x : A

∆; Ψ `e t : A

∆; Ψ `e injl t : A⊕B
∆; Ψ `e t : B

∆; Ψ `e injr t : A⊕B
∆1; Ψ `e t1 : A ∆2; Ψ `e t2 : B

∆1,∆2; Ψ `e 〈t1, t2〉 : A⊗B
∆; Ψ `e t : A[X ← µX.A]

∆; Ψ `e fold t : µX.A

Ψ `ω f : A↔ B ∆; Ψ `e t : A

∆; Ψ `e f t : B

`ω ω : A↔ B ∆; Ψ `e t : A

∆; Ψ `e ω t : B

∆1; Ψ `e t1 : A1 ⊗ · · · ⊗An ∆2, x1 : A1, . . . , xn : An; Ψ `e t2 : B

∆1,∆2; Ψ `e let (x1, . . . , xn) = t1 in t2 : B

Table 4.2.: Typing of terms and expressions

Example 4.2.5. We can define the iso of type: A⊕ (B ⊕ C)↔ C ⊕ (A⊕B) as
injl a ↔ injr injl a
injr injl b ↔ injr injr b
injr injr c ↔ injl c


Finally, our language is equipped with a rewriting system→ on terms, defined in Defini-
tion 4.2.9, that follows a deterministic call-by-value strategy: each argument of a function
is fully evaluated before applying the substitution. This is done through the use of an
evaluation context C[], as for the β-reduction defined in Section 3.1.1. Due to the de-
terministic nature of the strategy, we directly obtain the unicity of the normal form.
The evaluation of an iso applied to a value relies on a notion of pattern-matching: the
argument is matched against the left-hand-side of each clause until one of them matches
(written σ[v] = v′), in which case the pattern-matching, as defined in Definition 4.5, re-
turns a substitution σ that sends variables to values. Because we ensure exhaustivity and
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∆1 `e v1 : A . . . ∆n `e vn : A ODA({v1, . . . , vn})
∆1; Ψ `e e1 : B . . . ∆n; Ψ `e en : B ODB({V al(e1), . . . , V al(en)})

Ψ `ω {v1 ↔ e1 | · · · | vn ↔ en} : A↔ B.

f : α `ω f : α
f : α `ω ω : α fix f.ω is structurally recursive

Ψ `ω fix f.ω : α

Table 4.3.: Typing of isos

ODA({x}) OD1({()})
ODA(S) ODB(T )

ODA⊕B({injl v | v ∈ S} ∪ {injr v | v ∈ T})

ODA[X←µX.A](S)

ODµX.A({fold v | v ∈ S})

ODA(π1(S)) and ∀v ∈ π1(S), ODB(S1
v)

or ODB(π2(S)) and ∀v ∈ π2(S), ODA(S2
v)

ODA⊗B(S = {〈v1, v
′
1〉, . . . , 〈vn, v′n〉})

Table 4.4.: Exhaustivity and Non-Overlapping

non-overlapping (Lemma 4.2.7), the pattern-matching can always occur on well-typed
terms. The support of a substitution σ is defined as supp(σ) = {x | (x 7→ v) ∈ σ}.

Definition 4.2.6 (Substitution). Applying substitution σ on an expression t, written
σ(t), is defined, as:

• σ(()) = (),

• σ(x) = v if {x 7→ v} ⊆ σ,

• σ(injr t) = injr σ(t),

• σ(injl t) = injl σ(t),

• σ(〈t, t′〉) = 〈σ(t), σ(t′)〉,

• σ(ω t) = ω σ(t),

• σ(let p = t1 in t2) = (let p = σ(t1) in σ(t2)).

Lemma 4.2.7 (ODA(A) ensures exhaustivity and non-overlapping.). Let ODA(S) then
for all close value v of type A, there exists a unique v′ ∈ S and a unique σ such that
σ[v′] = v.

Proof. By induction on ODA(S):

• ODA({x}) and OD1({()}) are direct.
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σ[e] = e′

σ[injl e] = injl e
′

σ[e] = e′

σ[injr e] = injr e
′
σ = {x 7→ e}
σ[x] = e

σ[e] = e′

σ[fold e] = fold e′

σ2[e1] = e′1 σ1[e2] = e′2 supp(σ1) ∩ supp(σ2) = ∅ σ = σ1 ∪ σ2

σ[〈e1, e2〉] = 〈e′1, e′2〉 σ[()] = ()

Table 4.5.: Pattern-matching

• ODA⊕B({injl v | v ∈ SA} ∪ {injr v | v ∈ SB}) let v = injl ṽ then by induction
hypothesis on SA there exists v1 ∈ SA such that σ1[v1] = ṽ, hence σ1[injl v1] =
injl ṽ. Now assume there also exists v2 ∈ SA such that σ2[v2] = ṽ, by induction
hypothesis we have that v1 = v2 hence injl v1 = injl v2.

Similar case for the injr .

• Similar case for the fold .

• Assuming we are in the first case of the disjunction in the premise of ODA⊗B, the
other case being similar:

Take some value 〈ṽ, ṽ′〉, by induction hypothesis we know that there exists some
vi ∈ {v1, . . . , vn} such that σi[vi] = ṽ and therefore that there also exists some
v′i ∈ S1

vi such that σ′i[v
′
i] = v′.

Now assuming that there exists another pair 〈v1, v2〉 ∈ S such that σ[〈v1, v2〉] =
〈ṽ, ṽ′〉, by induction hypothesis we know that v1 = vi and that therefore v2 ∈ S1

vi =
S1
v1 so v2 = v′i.

Definition 4.2.8 (Evaluation Contexts). The evaluations contexts C are defined as:

C ::= [ ] | injl C | injr C | ω C | let p = C in t | 〈C, v〉 | 〈v, C〉

Definition 4.2.9 (Evaluation relation →). The rewriting system → is defined as:

t1 → t2
C[t1]→ C[t2]

Cong
σ[p] = v

let p = v in t→ σ(t)
LetE

(fix f.ω)→ ω[f ← (fix f.ω)]
IsoRec

σ[vi] = v′

{v1 ↔ e1 | · · · | vn ↔ en} v′ → σ(ei)
IsoApp

As usual we note →∗ for the reflexive transitive closure of →.

As mentioned above, from any iso ω : A↔ B we can build its inverse ω⊥ : B ↔ A, the
inverse operation is defined inductively on ω and is given in Definition 4.2.10.
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Definition 4.2.10 (Inversion). Given an iso ω, we define its dual ω⊥ as:

• f⊥ = f

• (fix f.ω)⊥ = fix f.ω⊥

• {(vi ↔ ei)i∈I}⊥ = {((vi ↔ ei)
⊥)i∈I}

and the inverse of a clause as: v1 ↔ let p1 = ω1 p
′
1 in

· · ·
let pn = ωn p

′
n in v′1

⊥ :=

 v′1 ↔ let p′n = ω⊥n pn in

· · ·
let p′1 = ω⊥1 p1 in v1

 .

We can show that the inverse is well-typed and behaves as expected:

Lemma 4.2.11 (Inversion is well-typed). If Ψ `ω ω : A↔ B, then Ψ `ω ω⊥ : B ↔ A.

Proof. w.l.o.g. consider ω = {v1 ↔ e1 | · · · | vn ↔ en}, we look at one clause in
particular and its dual: v1 ↔ let p1 = ω1 p

′
1 in

· · ·
let pn = ωn p

′
n in v′1

⊥ :=

 v′1 ↔ let p′n = ω⊥n pn in

· · ·
let p′1 = ω⊥1 p1 in v1

 .

By typing we know that ∆ `e v1 : A and ∆; Ψ `e let p1 = ω1 p
′
1 in . . . v′1 : B

∆ can be split into ∆1, . . . ,∆n,∆n+1 and for all 1 ≤ i ≤ n we get that the typ-
ing judgment of the expression let pi = ωi p

′
i in . . . generates the new typing judg-

ment Γi+1
i , . . . ,Γn+1

i . For all i we get that ∆i
⋃i−1
j=1 Γij `e ω p′i, finally v′1 is typed by

∆n+1
⋃n
i=1 Γn+1

i .

When typing the dual clause, we start with contexts ∆n+1
⋃n
i=1 Γn+1

i . We have from
hypothesis that:

• Each ω⊥i pi is typed by
⋃n
j=i+1 Γnj , which is possible by our typing hypothesis.

• Each p′i generates the contexts ∆i,
⋃i
j=1 Γij .

At the end we end up with ∆1, . . . ,∆n,∆n+1 `e v1 which is typable by our hypothesis.

In order to show that our isos are indeed isomorphisms, we need the following lemma:

Lemma 4.2.12 (Commutativity of substitution). Let σ1, σ2 and v, such that σ1 ∪ σ2

closes v and supp(σ1) ∩ supp(σ2) = ∅ then σ1(σ2(v)) = σ2(σ1(v))
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Proof. Direct by induction on v as σ1 and σ2 have disjoint support: In the case where
v = x then either {x 7→ v′} ∈ σ1 or {x 7→ v′} ∈ σ2 and hence σ1(σ2(x)) = v′ = σ2(σ1(x)).
All the other case are by direct induction hypothesis as the substitutions enter the
subterms.

Theorem 4.2.13 (Isos are isomorphisms). For all well-typed isos `ω ω : A ↔ B, and
for all well-typed values `e v : A, if (ω (ω⊥ v))→∗ v′ then v = v′.

Proof. By induction hypothesis on the size of ω:

• Case where ω = {v1 ↔ v1 | . . . | vn ↔ v′n} then ω⊥(ω v0), by non-overlapping
and exhaustivity there exists a vi such that σ[vi] = v0 and hence the term reduces
to ω⊥σ(v′i). It is clear that σ[v′i] = σ(vi) and hence the terms reduces to σ(vi), but
by the first pattern-matching we know that σ(vi) = v0, which concludes the case.

• Case where ω = {v1 ↔ e1 | · · · | vn ↔ en},

for simplicity of writing we write a single clause:

 v1 ↔ let p1 = ω1 p
′
1 in

· · ·
let pn = ωn p

′
n in v′1

⊥ :=

 v′1 ↔ let p′n = ω⊥n pn in

· · ·
let p′1 = ω⊥1 p1 in v1

 .

Take some closed value `e v0 : A such that σ[v1] = v0.

By linearity, we can decompose σ into σ1, . . . , σn, σn+1 such that, after substitution
we obtain

let p1 = ω1 σ1(p′1) in . . . let pn = ωn σn(p′n) in σn+1(v′1)

Given By Lemma 4.2.19, each let construction will reduce, and by the rewriting
strategy we get:

let p1 = ω1 σ1(p′1) in
. . .

let pn = ωn σn(p′n) in
σn+1(v′1)

→

let p1 = v1 in

. . .
let pn = ωn σn(p′n) in

σn+1(v′1)

→

let p2 = ω2 γ
2
1(σ1(p′1)) in
. . .

let pn = ωn γ
n
1 (σn(p′n)) in

σn+1(v′1)

The final term reduces to γnn(. . . (γn1 (σn+1(v′1))) . . . ) and creates a new substitution
γi, the term will hence reduce to γn(. . . (γ1(σn+1(v′1))) . . . ). Let δ = ∪iγi ∪ σn+1

We are left to evaluate
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 v′1 ↔ let p′n = ω−1
n pn in

· · ·
let p′1 = ω−1

1 p1 in v1

 δ(v′1)

We get δ[v′1] = δ(v′1).

We know that each γi closes only pi, we can therefore substitute the term as:

let p′n = ωn γn(pn) in . . .let p′1 = ω1γ1(p1) in σn+1(v′1)

By induction hypothesis, Each let clause will re-create the substitution σi, we
know this as the fact that the initial let construction, let pi = ωi σi(p

′
i) in . . .

reduces to let pi = vi in . . . While the new one, let p′i = ω⊥γi(pi) in . . ., is, by
definition of the substitution the same as let p′i = ω⊥vi in . . .

Then, since we know that vi is the result of ω σi(p
′
i), we get by induction hypothesis

σ(p′i) as the result of the evaluation.

Therefore, after rewriting we obtain: σn(. . . (σ1(σn+1(v′1))) . . . ). By Lemma 4.2.12
we get σ1(. . . (σn(σn+1(v′1))) . . . ) which is equal to v.

Example 4.2.14. We give the encoding of the isomorphism map(ω) and its inverse: for
any given iso `ω ω : A ↔ B in our language, we can define map(ω) : [A] ↔ [B] where
[A] = µX.1⊕(A⊗X) is the type of lists of type A and [ ] is the empty list (fold (injl ()))
and h :: t is the list construction (fold (injr 〈h, t〉)). We also give its dual map(ω)⊥

below, as given by Definition 4.2.10.

map(ω) = fix f.


[ ] ↔ [ ]
h :: t ↔ leth′ = ω h in

let t′ = f t in
h′ :: t′

 : [A]↔ [B]

map(ω)⊥ = fix f.


[ ] ↔ [ ]
h′ :: t′ ↔ let t = f t′ in

leth = ω⊥h′ in
h :: t

 : [B]↔ [A]

Remark 4.2.15. In Example 4.2.5 and Example 4.2.14, the left and right-hand side of
the↔ on each function respect both the criteria of exhaustivity —every-value of each type
is being covered by at least one expression— and non-overlapping —no two expressions
cover the same value. Both isos are therefore bijections.

The language enjoys the standard properties of typed languages of progress and subject
reduction, but requires a substitution lemma on both terms and isos:
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Lemma 4.2.16 (Substitution Lemma of variables).

• For all values v1, . . . , vn, types A1, . . . , An and context ∆1, . . . ,∆n such that for
i ∈ {1, . . . , n},∆i `e vi : Ai.

• For all term t, type B and context Γ and variables x1, . . . , xn ∈ FV(t) such that
Γ, x1 : A1, . . . , xn : An `e t : B

Let σ = {x1 7→ v1, . . . , xn 7→ vn} then Γ,∆1, . . . ,∆n `e σ(t) : B

Proof. By induction on t.

• Case x, then Γ = ∅ and we have σ = {x 7→ v} for some v of type B under some
context ∆, then we get ∆ `e σ(x) : B which leads to ∆ `e v : B which is typable
by our hypothesis.

• Case (), nothing to do.

• Case injl t
′, by substitution we have σ(injl t

′) = injl σ(t′) and by typing we get

Γ,∆1, . . . ,∆n ` σ(t′)

Γ,∆1, . . . ,∆n ` injl σ(t′) which is typable by induction hypothesis on t′.

• Case injr t
′, fold t′, ω t′ are similar.

• Case 〈t1, t2〉, by typing we get that we can split Γ into Γ1,Γ2 and the variables
x1, . . . , xn are split into two parts for typing both t1 or t2 depending on whenever
or not a variable occurs freely in t1 or t2, w.l.o.g. say that x1, . . . , xl are free in t1
and xl+1, . . . , xn are free in t2 then we get:

Γ1, x1 : A1, . . . , xl : Al `e t1 : B1 Γ2, xl+1 : Al+1, . . . , xn : An `e t2 : B2

Γ1,Γ2, x1 : A1, . . . , xl : Al, xl+1 : Al+1, . . . , xn : An `e 〈t1, t2〉 : B1 ⊗B2

By substitution we get that σ(〈t1, t2〉) = 〈σ(t1), σ(t2)〉 so we get the following
typing derivation which is completed by induction hypothesis on the subterms:

Γ1,∆1, . . . ,∆l `e t1 : B1 Γ2,∆l+1, . . . ,∆n `e t2 : B2

Γ1,Γ2,∆1, . . . ,∆l,∆l+1, . . . ,∆n `e 〈t1, t2〉 : B1 ⊗B2

• Case let p = t1 in t2 Similar to the case of the tensor.

Lemma 4.2.17 (Substitution Lemma Of Isos). If :

• ∆; f : α `e t : A

• g : β `ω ω : α

Then ∆; g : β `e t[f ← ω] : A.

If :

• f : α `ω ω1 : β
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• h : γ `ω ω2 : α

Then h : γ `ω ω1[f ← ω2] : β.

Proof. We prove those two propositions by mutual induction on t and ω1.

Terms, by induction on t.

• If t = x or t = () then there is nothing to do.

• If t = injl t
′ or injr t

′ or fold t′ or 〈t1, t2〉 or let p = t1 in t2, then similarly to
the proof of Lemma 4.2.16 the substitution goes to the subterms and we can apply
the induction hypothesis.

• If t = ω′ t′. In that case, the substitution goes to both subterms: t[f ← ω] =
(ω′[f ← ω]) (t′[f ← ω]) and by induction hypothesis on t′ and by the mutually
recursive proof.

Isos, by induction on ω1.

• If ω1 = f , then we get h : γ `ω f [f ← ω2] : β which is typable by hypothesis.

• Ifω1 = g 6= f is impossible by our typing hypothesis.

• If ω1 = fix g.ω, then by typing f does not occur in ω1 so nothing happens.

• If ω1 = {v1 ↔ e1 | · · · | vn ↔ en}, then, by definition of the substitution we have
that

{v1 ↔ e1 | · · · | vn ↔ en}[f ← ω2]

= {v1 ↔ e1[f ← ω2] | . . . | vn[f ← ω2]↔ en[f ← ω2]}

in which case we apply the substitution lemma of isos on terms.

From that we can directly deduce subject reduction and progress:

Lemma 4.2.18 (Subject Reduction). If ∆; Ψ `e t : A and t→ t′ then ∆; Ψ `e t′ : A.

Proof. By induction on t→ t′ and direct by Lemma 4.2.16 and Lemma 4.2.17

Lemma 4.2.19 (Progress). If `e t : A then, either t is a value, or t→ t′.

Proof. Direct by induction on `e t : A. The two possible reduction cases, ω v and
let p = v in t always reduce by typing, pattern-matching and by Lemma 4.2.7.
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4.3. Computational Content

In this section, we study the computational content of our language. We show that we
can encode Recursive Primitive Permutations [PPR20] (RPP), which shows us that we
can encode at least all Primitive Recursive Functions [RJ87].

4.3.1. From RPP to Isos

We start by defining the type of strictly positive natural numbers, npos, as npos =
µX.1 ⊕ X. We define n, the encoding of a positive natural number into a value of
type npos as 1 = fold injl () and n+ 1 = fold injr n. Finally, we define the type of
integers as Z = 1 ⊕ (npos⊕npos) along with z the encoding of any z ∈ Z into a value
of type Z defined as: 0 = injl (), z = injr injl z for z positive, and z = injr injr −z
for z negative. Given some function f ∈ RPPk, we will build an iso isos(f) : Zk ↔ Zk

which simulates f . isos(f) is defined by the size of the proof that f is in RPPk.

Definition 4.3.1 (Encoding of the primitives).

• The Sign-change is

isos(Sign) =


injr injl x ↔ injr injr x
injr injr x ↔ injr injl x

injl () ↔ injl ()

 : Z ↔ Z

• The identity is isos(Id) = {x↔ x} : Z ↔ Z

• The Swap is isos(X ) = {(x, y)↔ (y, x)} : Z2 ↔ Z2

• The Successor is

isos(S) =


injl () ↔ injr injl fold injl ()

injr injl x ↔ injr injl fold injr x
injr injr fold injl () ↔ injl ()
injr injr fold injr x ↔ injr injr x

 : Z ↔ Z

• The Predecessor is the inverse of the Successor: isos(P ) = isos(S)⊥.

Definition 4.3.2 (Encoding of Composition). Let f, g ∈ RPPj, ωf = isos(f) and ωg =
isos(g) the isos encoding f and g, we build isos(f ; g) of type Zj ↔ Zj as:

isos(f ; g) =


let (y1, . . . , yj) = ωf (x1, . . . , xj) in

(x1, . . . , xj) ↔ let (z1, . . . , zj) = ωg (y1, . . . , yj) in

(z1, . . . , zj)


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Definition 4.3.3 (Encoding of Parallel Composition). Let f ∈ RPPj and g ∈ RPPk,
and ωf = isos(f) and ωg = isos(g), we define isos(f || g) of type Zj+k ↔ Zj+k as:.

isos(f || g) =


let (x′1, . . . , x

′
j) = ωf (x1, . . . , xj) in

(x1, . . . , xj , y1, . . . , yk) ↔ let (y′1, . . . , y
′
k) = ωg (y1, . . . , yk) in

(x′1, . . . , x
′
j , y
′
1, . . . , y

′
k)



Definition 4.3.4 (Encoding of Finite Iteration). Let f ∈ RPPk, and ωf = isos(f), we
encode the finite iteration It[f ] ∈ RPPk+1 with the help of an auxiliary iso, ωaux, of type
Zk ⊗ npos↔ Zk ⊗ npos doing the finite iteration using npos, defined as:

ωaux = fixg.



(−→x , fold injl ()) ↔ let−→y = ωf
−→x in

(−→y , fold injl ())

(−→x , fold injr n) ↔ let (−→y ) = ωf (−→x ) in

let (−→z , n′) = g (−→y , n) in

(−→z , fold injr n
′)


We can now properly define isos(It[f ]) of type Zk+1 ↔ Zk+1 as:

isos(It[f ]) =



(−→x , injl ()) ↔ (−→x , injl ())

(−→x , injr injl z) ↔ let (−→y , z′) = ωaux(−→x , z) in

(−→y , injr injl z′)

(−→x , injr injr z) ↔ let (−→y , z′) = ωaux(−→x , z) in

(−→y , injr injr z′)


Definition 4.3.5 (Encoding of Selection). Let f, g, h ∈ RPPk and ωf = isos(f), ωg =
isos(g), ωh = isos(h). We define isos(If[f, g, h]) of type Zk+1 ↔ Zk+1 as:

isos(If[f, g, h]) =


(−→x , injr injl z) ↔ let

−→
x′ = ωf (−→x ) in (

−→
x′ , injr injl z)

(−→x , injl ()) ↔ let
−→
x′ = ωg(

−→x ) in (
−→
x′ , injl ())

(−→x , injr injr z) ↔ let
−→
x′ = ωh(−→x ) in (

−→
x′ , injr injr z)


Theorem 4.3.6 (The encoding is well-typed). If f ∈ RPPk, then `ω isos(f) : Zk ↔ Zk.

Proof. By induction on f , for the two compositions, iteration, and selection the variables
−→x are all of type Z, while for ωaux the last argument is of type npos. The predicate ODZ
is always satisfied as the left columns of the n-fold tensor are always variables and the
right-most argument on each isos always satisfies ODZ .
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Theorem 4.3.7 (Simulation). Let f ∈ RPPk and n1, . . . , nk elements of Z such that
f(n1, . . . , nk) = (m1, . . . ,mk) then isos(f)(n1, . . . , nk)→∗ (m1, . . . ,mk)

Proof. By induction on f .

• Direct for the identity, swap and sign-change.

• For the Successor:

ω =


injl () ↔ injr injl fold injl ()

injr injl x ↔ injr injl fold injr x
injr injr fold injl () ↔ injl ()
injr injr fold injr x ↔ injr injr x


we do it by case analysis on the sole input n.

– n = 0 then 0 = injl () and ω injl ()→ injr (injl (fold (injl ()))) = 1

– n = −1 then −1 = injr (injr (fold (injl ()))), so the term reduces to
injl () = 0

– Case n < −1, we have n = injr (injr (fold (injr n
′))) with n′ = n+ 1, by

pattern-matching we get injr injr x which is n′

– Case n > 1 is similar.

• The Predecessor is the dual of the Successor.

• Composition & Parallel composition: Direct by induction hypothesis on ωf
and ωg.: for the composition, ωf if first applied on all the input and then ωg on the
result of ωf . For the parallel composition, ωf is applied on the first j arguments
and ωg on the argument j+ 1 to k before concatenating the results from both isos.

• Finite Iteration: It[f ].

We need the following lemma: ωaux(x̄1, . . . , x̄n, z) →∗ (z̄1, . . . , z̄n, z) where z is a
non-zero integer and (z1, . . . , zn) = f |z|(x1, . . . , xn) which can be shown by induc-
tion on | z |: the case z = 1 and z̄ = fold injl () is direct by induction hypothesis
on ωf . Then if z = n + 1 we get it directly by induction hypothesis on both ωf
and our lemma.

Then, for isos It[f ] we do it by case analysis on the last argument: when it is 0̄
then we simply return the result, if it is z̄ for z (no matter if stricly positive or
stricly negative) then we enter ωaux, and apply the previous lemma.

• Conditional: If[f, g, h]. Direct by case analysis of the last value and by induction
hypothesis on ωf , ωg, ωh.
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Remark 4.3.8. Notice that isos(f)⊥ 6= isos(f−1), due to the fact that isos(f)⊥ will
inverse the order of the let constructions, which will not be the case for isos(f−1).
They can nonetheless be considered equivalent up to a permutation of let constructions
and renaming of variable.

4.4. Proof Theoretical Content

In this section, we want to relate our language of isos to proofs in a suitable logic. As
mentioned earlier, an iso `ω ω : A ↔ B corresponds to both a computation sending
a value of type A to a result of type B and a computation sending a value of type B
to a result of type A. Therefore, we want to be able to translate an iso into a proof
isomorphism: two proofs π and π⊥ of respectively A ` B and B ` A such that their
composition reduces through the cut-elimination to the identity either on A or on B
depending on the way we make the cut between those proofs.
Since we are working in a linear system with inductive types we will use the logic µMALL:
linear logic with least and greatest fixed points, which allows us to reason about inductive
and coinductive statements. µMALL allows us to consider infinite derivation trees, which
is required as our isos can contain recursive variables. As not all derivations of µMALL are
considered as proofs, we need to be careful in the way we translate isos into derivations.
We will also need to show that the obtained derivation are indeed proofs, this is ensured
by the structurally recursive constraints.

4.4.1. Translating isos into µMALL

We start by giving the translation from isos to pre-proofs, and then, in Theorem 4.4.20
show that they are actually proofs, therefore obtaining a static correspondence between
programs and proofs. We then show in Theorem 4.4.29 that our translation entails a
dynamic correspondence between the evaluation procedure of our language and the cut-
elimination procedure of µMALL. This will implies that the proofs we obtain are indeed
isomorphisms. meaning that if we cut the aforementioned proofs π and π⊥, performing
the cut-elimination procedure would give either the identity on A or the identity on B.

The derivations we obtain are circular, and we therefore translate the isos directly into
finite derivations with back-edges, written circ(ω) (defined in Definition 4.4.2). As men-
tioned in Section 3.4, we can define another translation into infinite derivations as the
composition of circ(−) with the unfolding: JωK = U(circ(ω)). Intuitively, this corre-
sponds to the infinite unfolding of the isos-variable f in an iso fix f.ω.

Representing sequents. As mentioned in Section 3.4, there exists multiple validity
criterion for the logic µMALL, for instance the one from [NST18] uses lists to represent
sequents with a threading function that tells us how the formulas are distributed over the
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inferences rules. Due to the way sequents are represented there is no need for formula
occurrence, as in [Bae+20], and one simply works with formulas.

The difference between the two criterias lies in the fact that the one from [NST18] does
not enjoy the cut-elimination procedure. Because we need to keep track of which formula
is associated to which variable from the typing context, the translation uses a slightly
modified version of µMALL in which contexts are split in two parts, written Υ; Θ, where
Υ is a list of formulas occurrence and Θ is a set of formula occurrences associated with
a term-variable (written x : F ). When starting the translation of an iso of type A↔ B,
we start in the context [Aα]; ∅ (for some address α) and end in some context []; Θ. The
additional information of the variable in Θ is here to make sure we know how to split the
contexts accordingly when needed later during the translation, with respect to the way
they are split in the typing derivation (for instance, in the case of a tensor). We write
Θ = {F | x : F ∈ Θ} and Θ = {x : A | x : Aα ∈ Θ}. This modified system also make
uses of another rule, called the exchange rule which allows us to send the first formula
from Υ to Θ and affecting it a variable, defined as:

Υ;x : F,Θ ` G
F :: Υ; Θ ` G ex(x)

Given a derivation ι in this system, we write TιU for the function that sends ι into a
derivation of µMALL where (i) we remove all occurrences of the exchange rule (ii) the
contexts []; Θ become Θ. In this system the cut-elimination holds: one can simply ignore
the lists, remove the exchange rule and the variable in the typing context Θ in order to
fall back to the system from [Bae+20].

Translation. Given an iso ω : A ↔ B and initial addresses α, β, its translation into a
derivation of µMALL of Aα ` Bβ is described with three separate phases:

Iso Phase. The first phase consists in travelling through the syntactical definition of
an iso, keeping as information the last encountered iso-variable bounded by a fix and
calling the negative phase when encountering an iso of the form {v1 ↔ e1 | · · · | vn ↔ en}
and attaching to the formulas A and B two distinct addresses α and β and labelling
the sequent with the name of the last encountered iso-variable. Later on, during the
translation, this phase will be recalled when encountering another iso in one of the ei,
and, if that iso corresponds to an iso-variable, we will create a back-edge pointing towards
the corresponding sequents.

Negative Phase. Starting from some context [Aα],Θ, the negative phase consists in
decomposing the formula A according to the way the values of type A on the left-hand-
side of ω are decomposed. The negative phase works as follows: we consider a set of
pairs made of a list of values and a typing judgment, written (l, ξ) where each element of
the set corresponds to one clause v ↔ e of the given iso and ξ is the typing judgment of
e. The list of values corresponds to what is left to be decomposed in the left-hand-side of
the clause (for instance if v is a pair 〈v1, v2〉 the list will have two elements to decompose).

71



Chapter 4. A Curry-Howard Correspondence for Linear, Reversible Computation

Each element of the list Υ will correspond to exactly one value in the list l. If the term
that needs to be decomposed is a variable x, then we will apply the ex(x) rule, sending
the formula to the context Θ. The negative phase ends when the list Υ is empty. When
it is the case, we can start decomposing ξ and the positive phase starts. The negative
phase is defined by case analysis on the first elements of the lists of the set, which are
known by typing to have the same type constructor, and is given in Figure 4.1.

Positive phase. The translation of an expression is pretty straightforward: each let and
iso-application is represented by two cut rules: as usual in Curry-Howard correspon-
dence [SU06]. Keeping the variable-formula pair in the derivation is here to help us
know how to split accordingly the context Θ when needed, while Υ is always empty
and is therefore omitted. While the positive phase carries over the information of the
last-seen iso-variable, it is not noted explicitly as it is only needed when calling the Iso
Phase. The positive phase is given in Figure 4.2.

Remark 4.4.1. While µMALL is presented in a one-sided way, we write Σ ` Φ for
` Σ⊥,Φ in order to stay closer to the formalism of the type system of isos and label the
left rules on Σ as the corresponding right rules on Σ⊥.

Definition 4.4.2. The translation circ(ω, S, α, β) = π takes a well-typed iso, a single-
ton set S of an iso-variable corresponding to the last iso-variable seen in the induction
definition of ω and two fresh addresses α, β and produces a circular derivation of the
variant of µMALL described above with back-edges. circ(ω, S, α, β) is defined inductively
on ω:

• circ(fix f.ω, S, α, β) = circ(ω, {f}, α, β)

• circ(f, {f}, α, β) = Aα ` Bβ
be(f)

• circ({(vi ↔ e′i)i∈I} : A ↔ B, {f}, α, β) = T Neg(([vi], ξi)i∈I)

Aα `f Bβ U where ξi is the

typing derivation of ei.

Example 4.4.3. The translation π = circ(ω, ∅, α, β) of the iso ω from Example 4.2.5,
with F = Aαl, G = Bαrl, H = Cαrr and F ′ = Aβrl, G

′ = Bβrr, H
′ = Cβl is:

id
[]; a : F ` F ′

⊕1

[]; a : F ` F ′ ⊕G′
⊕2

[]; a : F ` H ′ ⊕ (F ′ ⊕G′)
ex(a)

[F ]; ∅ ` H ′ ⊕ (F ′ ⊕G′)

id
[]; b : G ` G′

⊕2

[]; b : G ` F ′ ⊕G′
⊕2

[]; b : G ` H ′ ⊕ (F ′ ⊕G′)
ex(b)

[G]; ∅ ` H ′ ⊕ (F ′ ⊕G′)

id
[]; c : H ` H ′

⊕1

[]; c : H ` H ′ ⊕ (F ′ ⊕G′)
ex(c)

[H]; ∅ ` H ′ ⊕ (F ′ ⊕G′) `
[G⊕H]; ∅ ` H ′ ⊕ (F ′ ⊕G′) `

[F ⊕ (G⊕H)]; ∅ ` H ′ ⊕ (F ′ ⊕G′)

and its corresponding proof TπU in µMALL:
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id
F ` F ′ ⊕1

F ` F ′ ⊕G′ ⊕2

F ` H ′ ⊕ (F ′ ⊕G′)

id
G ` G′ ⊕2

G ` F ′ ⊕G′ ⊕2

G ` H ′ ⊕ (F ′ ⊕G′)

id
H ` H ′ ⊕1

H ` H ′ ⊕ (F ′ ⊕G′)
&

G⊕H ` H ′ ⊕ (F ′ ⊕G′)
&

F ⊕ (G⊕H) ` H ′ ⊕ (F ′ ⊕G′)

Example 4.4.4. Considering the iso swap of type A⊗B ↔ B⊗A and its µMALL proof

πS =

Aγl ` Aγ′r
id

Bγr ` Bγ′l
id

Aγl, Bγr ` (B ⊗A)γ′
⊗

(A⊗B)γ ` (B ⊗A)γ′
`

, we give the proof πm(S)

corresponding to Example 4.2.14 where F = (A⊗B)αirl and G = (B ⊗ A)βirl, then [F ]
and [G] are respectively of address α and β:

1
` 1 ⊕1

` 1⊕ (G⊗ [G])
µ

` [G]
⊥

1 ` [G]

id
F ` F

πS

F ` G
cut

F ` G

id
[F ] ` [F ]

πm(S)

[F ] ` [G]
cut

[F ] ` [G]

id
G ` G

id
[G] ` [G]

⊗
G, [G] ` (G)⊗ [G]

⊕2

G, [G] ` 1⊕ (G⊗ [G])
µ

G, [G] ` [G]

G, [G] ` [G]
cut

G, [F ] ` [G]
cut

F, [F ] ` [G] `
F ⊗ [F ] ` [G]

&
1⊕ (F ⊗ [F ]) ` [G]

ν
[F ] ` [G]

We painted in blue the pre-thread that follows the focus of the structurally recursive
criterion. During the negative phase which consists of the ν,&,`,⊥ rules the pre-thread
is going up, at each time going into the subformula corresponding to the focus. Then,
during the positive phase the pre-thread is not active during the multiple cut rules until
it reaches the id rule, where the pre-thread bounces and starts going down before bouncing
back up again in the cut rule, into the infinite branch, where the behaviour of the pre-
thread will repeat itself.

4.4.2. Pre-Proof Validity

Lemma 4.4.5. Given π = circ(ω), for each infinite branch of π, only a single iso-
variable is visited infinitely often.
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Neg({(injl vj :: lj , ξj)j∈J} ∪ {(injr vk :: lk, ξk)k∈K})
F1 ⊕ F2 :: Υ; Θ ` G =

Neg({(vj :: lj , ξj)j∈J})
F1 :: Υ; Θ ` G

Neg({(vk :: lk, ξk)k∈K})
F2 :: Υ; Θ ` G

F1 ⊕ F2 :: Υ; Θ ` G &

Neg({([], ξ)})
[]; Θ ` G =

Pos(ξ)

[]; Θ ` G
Neg({(() :: l, ξ)})
1 :: Υ; Θ ` G =

Neg({l, ξ})
Υ; Θ ` G

1 :: Υ; Θ ` G >

Neg({(〈v1
i , v

2
i 〉 :: li, ξi)i∈I})

F1 ⊗ F2 :: Υ; Θ ` G =

Neg({(v1
i :: v2

i :: li, ξi)i∈I})
F1, F2 :: Υ; Θ ` G
F1 ⊗ F2 :: Υ; Θ ` G `

Neg({(fold vi :: li, ξi)i∈I})
µX.F :: Υ; Θ ` G =

Neg({(vi :: li, ξi)i∈I})
F [X ← µX.F ] :: Υ; Θ ` G

µX.F :: Υ; Θ ` G ν

Neg({(x :: l, ξ)})
F :: Υ; Θ ` G =

Neg({l, ξ})
Υ; Θ, x : F ` G
F :: Υ; Θ ` G ex(x)

Figure 4.1.: Negative Phase

Proof. Since we have at most one iso-variable, we never end up in the case that between
an annotated sequent `f and a back-edge pointing to f we encounter another annotated
sequent.

Among the terms that we translate, the translation of a value yields what we call a
Purely Positive Proof : a finite derivation whose only rules have for active formula the
sole formula on the right of the sequent. Any such derivation is trivially a valid pre-
proof.

Definition 4.4.6 (Purely Positive Proof). A Purely Positive Proof is a finite, cut-free
proof whose rules are only ⊕i,⊗, µ,1, id for i ∈ {1, 2}.
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Pos
(
`e () : 1

)
= []; ∅ ` 1α

1

Pos
(
x : A `e x : A

)
= [];x : Aα ` Aβ

id

Pos

 ξ

Θ `e t : A1

Θ `e injl t : A1 ⊕A2

 =

Pos(ξ)

Θ ` (A1)αl
[]; Θ ` (A1 ⊕A2)α

⊕1

Pos

 ξ

Θ `e t : A2

Θ `e injr t : A1 ⊕A2

 =

Pos(ξ)

[]; Θ ` (A2)αr

[]; Θ ` (A1 ⊕A2)α
⊕2

Pos

 ξ1

Θ1 `e t1
ξ2

Θ2 `e t2 : A2

Θ1,Θ2 `e 〈t1, t2〉 : A1 ⊗A2

 =

Pos(ξ1)

[]; Θ1 ` (A1)αl

Pos(ξ2)

[]; Θ2 ` (A2)αr

[]; Θ1,Θ2 ` (A1 ⊗A2)α
⊗

Pos

 ξ

Θ `e t : A[X ← µX.A]

Θ `e fold t : µX.A

 =

Pos(ξ)

[]; Θ ` (A[X ← µX.A])αi

[]; Θ ` (µX.A)α
µ

Pos

 ξ1

Θ1 `e t1 : A1 ⊗ · · · ⊗An
ξ2

Θ2, x1 : A1, . . . , xn : An `e t2 : B

Θ1,Θ2 `e let (xi)i∈I = t1 in t2 : B

 =

Pos(ξ1)

[]; Θ1 ` F1 ⊗ · · · ⊗ Fn
Neg(([(xi)i∈I ], ξ2))

[F1 ⊗ · · · ⊗ Fn]; Θ2 ` Bα
[]; Θ1,Θ2 ` Bα

cut

Pos

 Ψ `ω ω : A↔ B

ξ

Θ `e t : A

Θ; Ψ `e ω t : B

 =

Pos(ξ)

[]; Θ ` A
circ(ω, {f}, α, β)

[A]; ∅ ` Bβ
[]; Θ ` Bβ

cut

Figure 4.2.: Positive Phase

Lemma 4.4.7 (Values are Purely Positive Proofs). Given x1 : A1, . . . , xn : An `e v : A

then

JvK
[];x1 : A1

α1
, . . . , xn : Anαn ` Aα is a purely positive proof.

Proof. By induction on ∆ `e v : A

• x : A `e x : A then the derivation is [];F ` F id
, which is a purely positive proof;

• ` () : 1 then the derivation is []; ∅ ` 1 1
, which is a purely positive proof;

• ∆1,∆2 ` 〈v1, v2〉 : A⊗B then we get

π1

∆1 ` A
π2

∆2 ` B
[]; ∆1,∆2 ` A⊗B

⊗
and then by induction

hypothesis on π1 and π2;
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• ∆ ` injl v : A ⊕ B then the derivation is

π
∆ ` A

[]; ∆ ` A⊕B ⊕
1

then by induction
hypothesis on π;

• Similar for injr v and fold v.

We can then define the notion of bouncing-cut and their origin:

Definition 4.4.8 (Bouncing-Cut). A Bouncing-cut is a cut of the form:

π
Σ ` G G ` F be(f)

Σ ` F cut

Due to the syntactical restrictions of the language we get the following:

Property 4.4.9 (Origin of Bouncing-Cut). Given a well-typed iso, every occurrence of
a rule be(f) in Tcirc(ω)U is a premise of a bouncing-cut.

In particular, when following a thread going up into a bouncing-cut, it will always start
from the left-hand-side of the sequent, before going back down on the right-hand-side
of the sequent. It will also always bounce back up on the bouncing-cut to reach the
back-edge. Also note that when translation an iso, the derivation π in the bouncing-cut
is a purely positive proof.

To make sure we follow the correct formula we define a notion of term occurrence and
show that it matches the addresses obtained from the negative phases:

Definition 4.4.10 (Term Occurrence). We note by Occ(v) the set of Occurrence in the
value v defined inductively on v by:

• Occ(v) = {ε} if v = x or v = ()

• Occ(〈v1, v2〉) = {ε} ∪ l ·Occ(v1) ∪ r ·Occ(v2)

• Occ(injl v) = {ε} ∪ l ·Occ(v)

• Occ(injr v) = {ε} ∪ r ·Occ(v)

• Occ(fold v) = {ε} ∪ i ·Occ(v)

Where x · S = {xα | α ∈ S} for x ∈ {l, r, i}

Given α ∈ Occ(v) we write v@α for the subterm of v at position α

We write ξ(v) = {α ∈ Occ(v) | v@α = x} for the set of position of variables in v and
ξ(x, v) for the position of x in v.
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Theorem 4.4.11. Given a sequence of sequents S0, . . . , Sn, with S0 = Aα ` Bβ and
Sn = Σ ` Bβ and the only rules applied are >,&,`, ν.

There exists a unique value v and context ∆ such that ∆ `e v : A and such that for all
expressions e such that ∆ `e e : B, for all isos `ω ω : A ↔ B such that v ↔ e is a
clause of ω, consider π = Tcirc(ω, ∅, α, β)U then S0, . . . , Sn is a branch of π and for all
formulas Aα ∈ Σ, there exists a unique variable x such that ξ(x, v) is a suffix of α.

Proof. By induction on n.

• Case 0, then take ∆ = x : A and v = x, obviously ∆ `e x : A. We also get that

ω = {x ↔ e} and Tcirc(ω)U =

TPos(e)U
Aα ` Bβ so the empty sequence is a branch and

ξ(v, v) = ε which is a suffix of α.

• Case n + 1. By induction hypothesis, the sequence S0, . . . , Sn with Sn sequent of
Σn ` Bβ gives us ∆n `e vn : A. Define the values contexts as V = [] | 〈V, v〉 |
〈v,V〉 | injl V | injr V | fold V.

Then, by case analysis on the rule of Sn+1.

– `: we can write Σn as A1
α1
, . . . , (C1⊗C2)kαk , . . . , A

n
αn ` Bβ and we know that

∆n = x1 : A1, . . . , xk : C1 ⊗ C2, . . . , xn : An then v can be written as V[xk].

Build vn+1 = V[〈y, z〉] and ∆n+1 = ∆\{xk : C1 ⊗ C2} ∪ {y : C1, z : C2}.

We get that ∆n+1 `e vn+1, then for any iso ω such that V[xk]↔ e is a clause,
we can replace the clause by V[〈y, z〉] ↔ e[x ← 〈y, z〉] in order to build ω′,
and if S0, . . . , Sn was a branch in Tcirc(ω)U then so is S0, . . . , Sn, Sn+1 in ω′.

We know that ξ(x, v) = γ is a suffix of αk, then after applying the ` rule we
have that C1 has address αkl and C2 has address αkr. Therefore, ξ(y, vn+1) =
γ l and ξ(z, vn+1) = γ r which are respectively suffixes of αkl and αkr.

– &. Assuming that Sn+1 goes to the left branch of the & rule.

We then have Σn = A1
α1
, . . . , (C1 ⊕ C2)kαk , . . . , A

n
αn ` Bβ and ∆n = x1 :

A1, . . . , xk : C1 ⊕ C2, . . . , xn : An with v = V[xk].

Consider vn+1 = V[injl y] and ∆n+1.

For any iso ω where vn ↔ e was a clause, we can consider the isos ω′ where the
clause vn ↔ e has been replaced by two clauses V[injl y] and V[injr r] with
e[x ← y] and e[x ← z]. S0, . . . , Sn, Sn+1 is obviously a branch in Tcirc(ω)U
by definition of the negative phase.

Also since ξ(x, v) = γ is a suffix of αk, after applying the & rule, on the left
branch we get C1 with address αkl. And ξ(y, vn+1) = γ l is a suffix of αkl.

– The other side of the & is similar.
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– The ν rule is similar.

– >. In which case we have Σn = 1α, A
1
α1
. . . , Anαn with ∆n = x : 1, x1 :

A1, . . . , xn : An with vn = V[x], build vn+1 as V[()] and ∆n+1 = x1 :
A1, . . . , xn : An. Then after the > rule we get Γn+1 = A1

α1
, . . . , Anαn so the

property holds by our induction hypothesis.

We can now show that our translation is well-defined:

Lemma 4.4.12. Given a closed iso `ω ω then circ(ω, ∅, α, β) for α, β fresh addresses,
is well-defined.

Proof. By induction on `ω. The iso is of the form fix f1. . . . ,fix fn.{v1 ↔ e1 | · · · | vn ↔
en} and as only the last iso-variable is kept, we end up in the case circ({(vi ↔ e′i)i∈I} :
A↔ B, {fn}, α, β), where the root of the derivation take place, annotated with fn.

The negative phase Neg(([vi], ξ
′
i)i∈I) is well-defined due to the predicate ODA: by defini-

tion of ODA all left-hand-side values have the same type constructors, they also have the
same type.

The positive phase is well-defined as it consists in recreating the typing judgment of
each expression ei. By Theorem 4.4.11 we know that the typing context of ei and the
one obtained from the negative phase contain the same variable associated to the same
formula / formula occurrence.

Given an iso ω = fix f.{v1 ↔ e1 | · · · | vn ↔ en}, we want to show that for any infinite
branch there exists a valid thread that inhabits it. As given by Lemma 4.4.5, an infinite
branch is uniquely defined by a single iso-variable.

Given the value vji that is the decreasing argument for the structurally recursive criterion,

we want to build a pre-thread that follows the variable xj : µX.B in vji : µX.B that is
the focus of the criterion.

Since our sequents are different from the one of µMALL during the negative phase, we
are forced to define properly the way the pre-thread is built. For the positive phase, our
sequents and the one of µMALL are the same, aside from the fact that the context also
contains variables, so for this part we can just use Definition 3.4.5.

Definition 4.4.13 (Pre-Thread of the negative phase). Given a well-typed iso
ω = fix f.{v1 ↔ e1 | · · · | vn ↔ en} : A ↔ B and a clause vi ↔ ei such that f p is a
subterm of ei and the variable xp is the focus of the primitive recursive criterion, and
considering π = circ(ω), we define PTn(xp, π) as the pre-thread that follow the formula
µX.A′ corresponding to xp up to the positive phase by induction on Neg({([vi], ei)i∈I}).
For simplicity, we simply omit the first argument of PTn.

• PTn(Neg({([], e)})) is impossible as we follow a variable;

78



Chapter 4. A Curry-Howard Correspondence for Linear, Reversible Computation

• PTn(Neg({((() :: l, e))})) = PTn(Neg({(l, e)}));

• PTn(Neg({((y :: l, e))})) =

{
ε if y = xp

PTn(Neg({(l, e)})) otherwise;

• PTn(Neg({(injl vi :: li, ei)i∈I} ∪ {(injl vj :: lj , ej)j∈J}))

=



(A⊕ C;A⊕ C,∆ ` B) · (A;A,∆ ` B) · PTn(Neg({(vi :: li, ei)i∈I}))
if xp ⊆ vi

(C ⊕A;C ⊕A,∆ ` B) · (A;A,∆ ` B) · PTn(Neg({(vj :: lj , ej)j∈J}))
if xp ⊆ vj

(µX.D;A1 ⊕A2,∆ ` B) · (µX.D,Ak,∆ ` B) · PTn(Neg({(vl :: ll, el)l∈L}))
for L ∈ {I, J}, k ∈ {1, 2} and if xp ⊂ lL

• Case PTn(Neg({(v1
i , v

2
i :: li, ei)i∈I}))

=


(A1 ⊗A2;A1 ⊗A2,∆ ` B) · (Ak;A1, A2,∆ ` B) · PTn(Neg({(v1

i , v
2
i :: li, ei)i∈I}))

for k ∈ {1, 2} if xp ⊂ vk
(µX.D;A1 ⊗A2,∆ ` B) · (µX.D;A1, A2,∆ ` B) · PTn(Neg({(v1

i , v
2
i :: li, ei)i∈I}))

if xp ⊆ l

• PTn(Neg({(fold vi :: li, ei)i∈I}))

=

{
(µX.A;µX.A,∆ ` B) · (A[X ← µX.A];A[X ← µX.A],∆ ` B) if xp ⊂ vi
(µX.D;µX.A,∆ ` B) · (µX.D;A[X ← µX.A],∆ ` B) if xp ⊂ li

Lemma 4.4.14 (Weight of the pre-thread for the negative phase). Given a well-typed iso
ω = fix f.ω with a clause v ↔ e, then w(PTn(Neg({([v], e)}))) is a word over {l, r, i,W}.

Proof. By case analysis of Definition 4.4.13:

• If the variable xp is not a subterm of the first value from the list l then the thread
has the form:(A;C,∆ ` B, ↑) · (A;C ′,∆ ` B, ↑) and the weight is W .

• If the variable xp is a subterm of the first value of the list l then by direct case
analysis on the first value: if the value is of form 〈v1, v2〉 then depending on whether
xp is in v1 or v2 the weight will be l or r, similarly for the injl and injr , while
the fold will create weight i.

A similar analysis can be done for the positive phase:

Definition 4.4.15 (Pre-thread of the positive phase). Given a well-typed iso ω =
fix f.{v1 ↔ e1 | · · · | vn ↔ en} : A ↔ B and a clause vi ↔ ei such that f p is a
subterm of ei and the variable xp is the focus of the primitive recursive criterion, and
considering π = circ(ω, S,Aα, Bβ), then we define PTp(x

p, Pos(ei)) as the pre-thread that
follow the formula µX.A′ corresponding to xp until the sequent Aα′ `f Bβ′ is reached.
For simplicity we also just write it as PTp(x

p).
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Lemma 4.4.16. Shape of the pre-thread of the positive phase Given a well-typed iso
ω such that the variable xp is the focus of the primitive recursive criterion, and two
successive element a, b from the pre-thread PT (xp) from the translation of ω, then a · b
are of either:

• (νX.F ; s; ↑) · (νX.F ; s′; ↑);

• ((νX.A)α; (νX.A)α ` (νX.A)β; ↑) · ((νX.A)β; (νX.A)α ` (νX.A)β; ↓);

• (F ; s; ↓) · (F ′; s′; ↓);

• (F ; s; ↓) · (F ; s′; ↑)

Proof. By a straightforward case analysis on the positive phase:

• If a right-rule is applied while the pre-thread is on the left side of the sequent, then
we are in the first case as the thread just goes up while following the formula.

• The second case occurs when encountering an axiom rule on the variable xp that
we follow.

• The third case is when going down on a purely positive proof. As we follow the
sole formula on the right, the formula necessarily changes and s, s′ are of the shape
∆ ` s,∆′ ` s′.

• The last one is when encountering a cut, at the root of the purely positive proof
that comes from the translation of a let.

We can now look at the weight of the positive phase:

Lemma 4.4.17 (Weight of the pre-Thread for the positive phase). Given a well-typed
iso such that the variable xp is the focus of the primitive recursive criterion, the weight
of the pre-thread on the positive phase PTp(x

p) is of the shape W∗A{l, r,W}∗C

Proof. By case analysis on Pos(e). As the thread only goes up by encountering cut-
rules or right-rules, we get W∗, and the thread goes up all the way to an axiom rule,
corresponding to the formula xp : νX.F , which adds the A. Finally, the thread goes
down on the purely positive proof, generating {l, r,W}∗ until reaching the cut-rule from
the bouncing cut.

We can then consider the infinite pre-thread as the concatenation of both the pre-thread
of the negative phase, and the one of the positive phase.

Lemma 4.4.18 (Form of the Pre-Thread). Given the pre-thread t following xp we have
that w(t) = p0(Σi≤npiW∗i AqiC)ω with
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• p0 is any prefix.

• pi ∈ {l, r, i,W}∗

• qi ∈ {l, r,W}∗

With, ∀i ≤ n, qi @ pi and | pi |>| qi | without counting the W, where p @ q is q is a
prefix of p and with xp = xp if x ∈ {l, r, i}, xp = xp if x ∈ {l, r, i} and Wp = p

Proof. pi is generated from Definition 4.4.13 while the rest up to the C (included) is
generated from Definition 4.4.15.

First, we show that | pi |>| qi | modulo the W.

Since pi is generated by the negative phase, we have that, moduloW, pi = {r}∗l+{l, r, i}∗,
this is due by definition of being primitive recursive and because we are looking for the
right variable. By definition of being primitive recursive the input type of the iso is
A1 ⊗ · · · ⊗ An, hence {r}∗l+ correspond to the search for the correct Ai for the input
type A1 ⊗ · · · ⊗An while {l, r, i}∗ is the decomposition of the primitive recursive value,
as described in Theorem 4.4.11.

As qi corresponds to the Purely Positive Proof, we know that the Purely Positive Proof
is the encoding of a pattern p = 〈x1, 〈. . . , xn〉〉. Hence, qi can be decomposed as {l+r∗}

By the fact that the iso is primitive recursive we know that the variable in p is a strict
subterm of the primitive recursive value, hence | pi |>| qi |.

The fact that qi @ pi is direct as the Purely Positive Proof reconstructs the type A1 ⊗
· · ·⊗An without modifying the Ai while pi start by searching for the corresponding type
Ai, so it is only composed of {l, r}∗, which will be the same as qi.

Theorem 4.4.19 (The Pre-thread generated is a thread). We want to find a decompo-
sition of the pre-thread such that it can uniquely be decomposed into

⊙
(Hi � Vi) with

• w(Vi) ∈ {l, r, i,W}∞ and non-empty if i 6= λ

• w(Hi) ∈ H

Proof. We set H0 as the empty pre-thread. (so w(H0) = ε) We set V0 as the maximal
possible sequence such that w(V0) ∈ {l, r, i,W}∗, i.e the sequence that ends with (A;A `
A; ↑). Then, for all i ≥ 1 we set

• Hi starts at (A;A ` A; ↑) just before the axiom rule so that the first element of
w(Hi) is A. Then Hi is composed of

– All of the pre-thread going down on the Purely Positive Proof after the axiom,
accumulating a word over {l, r, i,W}∗;

– Going back up into the cut-rule of the bouncing cut, making a C;
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– Going up to compensate every x seen in the Purely Positive Proof while going
down. This is possible as shown in Lemma 4.4.18.

• Vi is the maximal possible sequence such that w(Vi) ∈ {l, r, i,W}∗, i.e the sequence
that ends with (A;A ` A; ↑).

Theorem 4.4.20 (Validity of proofs). If `ω ω : A ↔ B and π = Tcirc(ω, ∅, α, β)U
then π satisfies µMALL validity criterion from Chapter 3.

Proof. By Theorem 4.4.19 we know that we have a thread of which we also know by
Theorem 4.4.19 that the visible part is not stationary.

Finally, by Lemma 4.4.18 and Theorem 4.4.19 we know that the visible part will see
infinitely often the subformulas of the formula µX.B that is the focus of the primitive
recursive criterion. This is due to the difference in size in the part of the thread from
the negative and from the positive phase and the fact that the positive phase does not
encounter a µ formula when going down on a purely positive proof.

By the constraints on the syntax of our isos, all the possible slices are necessarily per-
sistent.

Therefore, the smallest formula we will encounter is nu formula, validating the thread.

4.4.3. Proof Simulation

In order to show the relationship between the cut-elimination procedure of µMALL and
the rewriting system of our language we introduce a slightly modified version of the
rewriting system, that we call →eβ, using explicit substitution.

Convention 4.4.21. Given a substitution σ = {x1 7→ v1, . . . , xn 7→ vn} we will use the
shorthand letσ in t for letx1 = v1 in . . . letxn = vn in t.

Definition 4.4.22 (Explicit Substitution Rewriting System). →eβ is defined by the
following rules:

letx = v in x→elet v

let 〈x1, p〉 = 〈t1, t2〉 in t→elet letx1 = t1 in let p = t2 in t

letx = v in 〈t1, t2〉 →elet 〈letx = v in t1, t2〉 when x ∈ FV (t1)

letx = v in 〈t1, t2〉 →elet 〈t1, letx = v in t2〉 when x ∈ FV (t2)

letx = v in injl t→elet injl letx = v in t

letx = v in injr t→elet injr letx = v in t

letx = v in fold t→elet fold letx = v in t
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letx = v in ω t→elet ω letx = v in t

and the following rules:

t→eβ∪→elett
′

C[t]→eβ C[t′]
β − Cong

σ[p] = v

let p = v in t→eβ letσ in t
β − LetE

(fix f.ω)→eβ ω[f ← (fix f.ω)]
β − IsoRec

σ[vi] = v′

{v1 ↔ e1 | · · · | vn ↔ en} v′ →eβ letσ in ei
β − IsoApp

Remark 4.4.23. The rule β−LetE is superfluous as it can be inferred from the decom-
position of the rule of the decomposition of a let.

Each step of this rewriting system will correspond to exactly one step of cut-elimination,
while in the previous system, the rewriting that uses a substitution σ correspond in fact
to multiple steps of cut-elimination. →eβ makes this explicit. But first, we need to make
sure that both systems do the same thing:

Lemma 4.4.24 (Specialisation of the substitution on pairs). Let σ be a substitution
that closes ∆ `e 〈t1, t2〉, then there exists σ1, σ2, such that σ(〈t1, t2〉) = 〈σ1(t1), σ2(t2)〉
Where σ = σ1 ∪ σ2.

Proof. By the linearity of the typing system we know that FV (t1)∪FV (t2) = ∅, so there
always exists a decomposition of σ into σ1, σ2 defined as σi = {(xi 7→ vi) | xi ∈ FV (ti)}
for i ∈ {1, 2}.

Lemma 4.4.25 (Explicit substitution and substitution coincide). Let σ = {xi 7→ vi} be
a substitution that closes t, then letσ in t→∗elet σ(t).

Proof. By induction on t.

• x, then σ(x) = v and letx = v in x→elet v = σ(x).

• () then σ is empty and no substitution applies.

• 〈t1, t2〉, then by Lemma 4.4.24 σ(〈t1, t2〉) = 〈σ1(t1), σ2(t2)〉. By →elet, each let

construction will enter either t1 or t2, then by induction hypothesis.

• let p = t1 in t2 is similar to the product case.

• injl t, injr t, fold t, ω t. All cases are treated in the same way: by definition of
→elet, each let will enter into the subterm t, as with the substitution σ, then by
induction hypothesis.
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Corollary 4.4.26. If t→ t′ then t→∗eβ t′.

Proof. By induction on →, the case of IsoRec is the same, while for the other rules, just
by applying either β− IsoApp or β−LetE and then by Lemma 4.4.25, letσ in t→∗elet
σ(t) for any substitution σ that closes t. But σ(t) = t′, so t→∗eβ t′.

It is then possible to show a first step of the simulation procedure: that→eβ corresponds
to one step of cut-elimination:

Lemma 4.4.27 (Simulation of the let-rules of →eβ). Let Θ `e t : G be a well-

typed closed term: if t →elet t
′ then, given some fresh address β we get:

TPos(t)U
Θ ` Gβ

 

TPos(t′)U
Θ ` Gβ

.

Proof. By case analysis on →elet, for simplicity of reading we omit the address β.

• letx = v in x→elet v.

TPos(v)U
Θ ` G G ` G id

Θ ` G cut
 

TPos(v)U
Θ ` G

• let 〈x1, p〉 = 〈t1, t2〉 in t→elet letx1 = t1 in let p = t2 in t

Then:

TPos(t1)U
Θ1 ` G

TPos(t2)U
Θ2 ` F

Θ1,Θ2 ` G⊗ F
⊗

TNeg({[p], t})U
Θ3, G, F ` H

Θ3, G⊗ F ` F `
Θ1,Θ2,Θ3 ` H

cut

 
TPos(t1)U

Θ1 ` G

TPos(t2)U

Θ2 ` F
TNeg({[p], t})U
Θ3, G, F ` H

cut
Θ2,Θ3, G ` H

cut
Θ1,Θ2,Θ3 ` H

• letx = v in injl t→elet injl letx = v in t.

Then:

TPos(v)U
Θ1 ` F

TPos(t)U
F,Θ ` H

F,Θ2 ` H ⊕G
⊕1
R

Θ1,Θ2 ` H ⊕G
cut

 

TPos(v)U
Θ1 ` F

TPos(t)U
F,Θ2 ` H

Θ1,Θ2 ` H
cut

Θ1,Θ2 ` H ⊕G
⊕1
R
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• The same goes for letx = v in injr t →elet injr letx = v in t and letx =
v in fold t→elet fold letx = v in t

• letx = v in 〈t1, t2〉 →elet 〈letx = v in t1, t2〉 when x ∈ FV (t1)

Then:

TPos(v)U
Θ1 ` F

TPos(t1)U
F,Θ2 ` H

TPos(t2)U
Θ3 ` G

F,Θ2,Θ3 ` H ⊗G
⊗R

Θ1,Θ2,Θ3 ` H ⊗G
cut

 

TPos(v)U
Θ1 ` F

TPos(t1)U
F,Θ2 ` H

Θ1,Θ2 ` H
cut

TPos(t2)U
Θ3 ` G

Θ1,Θ2,Θ3 ` H ⊗G
⊗R

• Similar for the second rule on the pair.

• letx = v in ω t→elet ω (letx = v in t)

Then:
TPos(v)U

Θ1 ` F

TPos(t)U

F,Θ2 ` G
Tcirc(ω)U

G ` H
cut

F,Θ2 ` H
cut

Θ1,Θ2 ` H

 

TPos(v)U
Θ1 ` F

TPos(t)U
F,Θ2 ` G

Θ1,Θ2 ` G
cut

Tcirc(ω)U
G ` H

Θ1,Θ2 ` H
cut

We then show that the pattern-matching is captured by the cut-elimination:

Lemma 4.4.28. Let Γ `e v : A and ∆ `e v′ : A such that σ[v] = v′ and σ = {−→xj 7→ −→wj}
then for any list l = [v1, . . . , vn] where for all i ∈ {0, . . . , n} there exists Γi such that
(Γi `e vi) and such that ODA({v, v1, . . . , vn}) and for all i ∈ {0, . . . , n} and e1, . . . , en
such that (Γi `e ei : B) and such that such that ODB({V al(e1), . . . , V al(en)}) and given
Θ = {x : Aα | x : A ∈ ∆} and G = Bβ we have:

π =

TPos(v′)U

Θ ` H
TNeg({((v :: l)i, ei)i∈I})U

H ` G
cut

Θ ` G
 ∗

TNeg({l, let−→xi = −→wi in e})U
Θ ` G = π′

Proof. By induction on ODA({v, v1, . . . , vn}):

• Case ODA({x}) we get σ[x] = v then π = π′.
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• Case OD1({1}) then σ[()] = ()

π =
` 1 1R

TPos(e)U
` G
1 ` G 1L

` G cut
which reduces to

TPos(e)U
` G = π′ as σ is empty.

• Case ODµX.A({fold vi}) such that σ[fold vj ] = fold v′

Then π =

TPos(v′)U
Θ ` H[X ← µX.H]

µR

Θ ` µX.H

TNeg({[vi], ei})U
H[X ← µX.H] ` G

µL

µX.H ` G
Θ ` G cut

will reduce to

TPos(v′)U
Θ ` H[X ← µX.H]

TNeg({([vi], ei)})U
H[X ← µX.H] ` G

Θ ` G cut

then we can apply our induction hypothesis.

• Case ODA⊕B({injl vi} ∪ {injr vk}) with σ[injl vj ] = injl v
′

Then the proof π =

TPos(v′)U

Θ ` H ⊕1
R

Θ ` H ⊕ F

TNeg({[vi], ei})U
H ` G

TNeg({[vk], ek})U
F ` G ⊕L

H ⊕ F ` G
cut

Θ ` G

reduces to

TPos(v′)U

Θ ` H
TNeg({[vi], e})U

H ` G
cut

Θ ` G
then we can apply our induction hypothesis.

• The case σ[injr vj ] = injr v
′ is similar to the previous case.

• Case ODA⊗B({〈v1
i , v

2
i 〉}) with σ[〈v1

j , v
2
j 〉] = 〈v′1, v′2〉

Then π =

TPos(v′1)U

Θ1 ` H
TPos(v′2)U

Θ2 ` F ⊗R
Θ1,Θ2 ` H ⊗ F

TNeg({([〈v1, v2,〉 i], ei)i∈I})U

H,F ` G
⊗L

H ⊗ F ` G
cut

Θ1,Θ2 ` G
Which reduces to
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TPos(v′1)U

Θ1 ` H

TPos(v′2)U

Θ2 ` F
TNeg({((v1 :: v2 :: l)i, ei)i∈I})U

H,F ` G
cut

Θ2, H ` G
cut

Θ1,Θ2 ` G
Because the negative phase on [v1, v2] only produces &,`,>, ν rules, we get that
Neg({(v1 :: v2 :: l, e)}) = Neg({(v2 :: v1 :: l, e)}) by the commutation of rules of
Linear Logic. Therefore, we can get

TPos(v′1)U

Θ1 ` H

TPos(v′2)U

Θ2 ` F
TNeg({((v2 :: v1 :: l)i, ei)i∈I})U

H,F ` G
cut

Θ2, H ` G
cut

Θ1,Θ2 ` G
which, by induction hypothesis on v2, reduces to

TPos(v′1)U

Θ1 ` H
TNeg({((v1 :: l)i, letxj = wj in ei)i∈I})U

H ` G
cut

Θ1,Θ2 ` G
And then we can apply our second induction hypothesis on v1.

We can then conclude with the global simulation theorem as a direct implication of the
two previous lemmas:

Theorem 4.4.29 (Iso-substitution cut-elim). Let {v1 ↔ e1 | · · · | vn ↔ en} v → σ(ei)
when σ[vi] = v then TPos({v1 ↔ e1 | · · · | vn ↔ en} v)U ∗ TPos(letxj = vj in ei)U ∗

TPos(σ(ei))U when σ = {xj 7→ vj}

Proof. By Lemma 4.4.25, we know that the explicit substitution and the substitution
coincide. Lemma 4.4.27 tells us that one step of →elet is simulated by exactly one
step of cut-elimination and finally Lemma 4.4.28 tells us that we simulate properly the
pattern-matching.

Corollary 4.4.30 (Simulation). Provided an iso `ω ω : A↔ B and values `e v : A and
`e v′ : B, let π = TPos(ω v)U and π′ = TPos(v′)U, if ω v →∗ v′ then π  ∗ π′.

Proof. Direct application of Theorem 4.4.29.

This leads to the following corollary:
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Corollary 4.4.31 (Isomorphism of proofs.). Given a well-typed iso `ω ω : A↔ B and
two well-typed close value v1 of type A and v2 of type B and the proofs π : F1 ` G1,
π⊥ : G2 ` F1, φ : F3, ψ : G2 corresponding respectively to the translation of ω, ω⊥, v1, v2

then:

φ

` F3

 

φ

` F3

π
F1 ` G1

` G1
cut

π⊥

G2 ` F2

` F2
cut

ψ

` G3

π⊥

F2 ` G2

` F2
cut

π
F1 ` G1

` G1
cut
 

ψ

` G3

Proof. As a direct implication of Theorem 4.2.13 and Corollary 4.4.30.

4.5. Removing Exhaustivity

While the language presented thus far works with total functions, partial functions are
enough to consider reversible computation. In particular, a partial injective function
f can be made reversible by considering its inverse f−1 as being only defined on the
codomain of f . In this section we work on partial isos by removing the constraints
of exhaustivity imposed by ODA. We preserve the orthogonality between values, noted
v⊥v′ and defined in Table 4.6. Most of the result from Section 4.2 still holds except for
progress, as the term ω v can be stuck and not reduce, if no pattern of ω matches the
value v. What we obtain though is a proof of Turing Completeness for the language, for
that we show how any Reversible Turing Machine [MY07] can be encoded as a well-typed,
partial iso of the language.

4.5.1. Encoding of Reversible Turing Machines

We want to be able to encode any RTM (Q,Σ, δ, b, qs, qf ) into our language. As men-
tioned in Definition 1.1.5, δ is a partial relation: hence the encoded isos will also need to
be partial, something not possible with the current typing rules because of the predicate
ODA. We modify the predicate ODA in order to ensure only non-overlapping through a
notion of orthogonality between values, noted v⊥v′. Obtained isos will then represent
partial injective functions. Orthogonality is defined similarly as in [SVV18] and its defi-
nition is given in Table 4.6. Another constraint we need to lift is termination: a Turing
Machine may not terminate, while our isos always do.

We can show that this new definition of orthogonality satisfies the usual condition:

Lemma 4.5.1. Given a finite set of well-typed value S of type A such that for all
v1 6= v2 ∈ S, v1⊥v2, and a value v of type A, if there exists v1, v2 ∈ S such that σ1[v1] = v
and σ2[v2] = v then v1 = v2.
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injl v⊥injr v′ injr v⊥injl v′
v⊥v′

fold v⊥fold v′

v⊥v′
injl v⊥injl v′

v⊥v′
injr v⊥injr v′

v1⊥v2

〈v, v1〉⊥〈v′, v2〉
v1⊥v2

〈v1, v〉⊥〈v2, v
′〉

Table 4.6.: Orthogonality Condition on Values

Proof. By induction on σ1[v1] = v

• Case σ1[x] = v: There is no value v2 such that v2⊥x, hence S = {x} so v2 = x.

• Case σ1[()] = (): Similarly.

• Case σ1[injl v
′
1] = injl v

′: By definition of the pattern-matching we have σ1[v′1] =
v′. The only possible value for v2 is then injl v

′
2. By IH we get v′1 = v′2 hence

v1 = v2.

• The case for injr v1 and fold v1 are similar.

• Case for σ[〈v1
1, v

2
1〉] = 〈v1, v2〉: By definition of the pattern-matching we have

σ1[v1
1] = v1 and σ2[v2

1] = v2. By orthogonality, we have that v2 = 〈v1
2, v

2
2〉 and

therefore by IH v1
1 = v1

2 and v2
1 = v2

2 so v1 = v2.

We can also related the OD predicate with this orthogonality:

Lemma 4.5.2. Given a set of well-typed value S = {v1, . . . , vn} of type A, if ODA(S)
then, for all i 6= j, vi⊥vj.

Proof. By induction on ODA(S).

• Direct for the case where S = {x} or {()}.

• Case where S = {injl v | v ∈ S1} ∪ {injr v | v ∈ S2}, then we want to show that
for all i 6= j, vi⊥vj for vi, vj ∈ S. We have three cases:

– If vi, vj ∈ S1 then by direction induction hypothesis on S1.

– Similar is vi, vj ∈ S2

– If vi ∈ S1 and vj ∈ S2 (or conversely) then by construction we have vi =
injl v

′
i and vj = injr v

′
j and are therefore orthogonal.

• Case S = injl fold v | v ∈ S′ is direct by induction hypothesis on S′.
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• Case where S = {〈v1, v
′
1〉, . . . , 〈vn, v′n〉}, assuming the left side of the premise is

taken:

We want to show that for all i 6= j, 〈vi, v′i〉⊥〈vj , v′j〉.

By induction hypothesis we know ODA(π1(S)) and therefore vi⊥v′j . The other case
being similar.

Then the typing rules for isos become

∆1 `e v1 : A . . . ∆n `e vn : A ∀i 6= j, vi⊥vj
∆1; Ψ `e e1 : B . . . ∆n; Ψ `e en : B ∀i 6= j, V al(ei)⊥V al(ej)

Ψ `ω {v1 ↔ e1 | · · · | vn ↔ en} : A↔ B.

f : A↔ B `ω ω : A↔ B

Ψ `ω fix f.ω : A↔ B

In order to encode a Turing Machine T = (Q,Σ, δ, b, qs, qf ) into an iso isos(T ) we first
need to define suitable types and a representation for each component of T .

Definition 4.5.3 (Encoding of States and Tape Symbols). Given a finite set of states
Q = {q1, . . . , qn} and finite set of tape symbols Σ = {s1, . . . , sm} with b ∈ Σ, qs, qf ∈ Q

define the types QT and ΣT as respectively

n+1 times︷ ︸︸ ︷
1⊕ · · · ⊕ 1 and

m+1 times︷ ︸︸ ︷
1⊕ · · · ⊕ 1.

Then b, qs and qf are values of type QT and ΣT taken by convention as: b = injl (), qs =
injl (), qf = injr injl ().

We write qT (resp. sT ) for a value of type QT (resp. ΣT ) representing the state q (resp.
the letter s) of the RTM.

Since the String Semantics defined on Definition 1.1.9 is only defined on terminating run
that use a finite amount of tape, we can represent the tapes as a Zipper: a pair of lists
of type ΣT .

Definition 4.5.4 (Encoding of Configurations). Given a Turing Machine T let Zipper =
[ΣT ]⊗ [ΣT ]

Define the type of configuration as CT = (QT ⊗ Zipper) We represent the configuration
C = (q, (l, a, r)) as isos(C) = (isos(q), (isos(a) :: isos(l), isos(r))) where isos(l), isos(r) is
the list of element of the encoding of the element on tape where

• If the tape is empty (infinite tape of empty symbol), isos(l) = [].

• If the tape is non-empty but has an infinite suffix of empty symbol, i.e it can be
written as l = [s1, . . . , sn, ε, ε, . . . ] then isos(l) = [isos(s1), . . . , isos(sn)].
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We can finally encode the transition relation δ where each element of δ give rise to a
clause made of values:

Definition 4.5.5 (Encoding of δ). We encode each rule of δ as a clause of an iso.

• Transition (q,→, q′) is encoded as the clause

(isos(q), (l1, x :: l2))↔ (isos(q′), (x :: l1, l2)).

• Transition (q,←, q′) is encoded as the clause

(isos(q), (x :: l1, l2))↔ (isos(q′), (l1, x :: l2))

• Transition (q, ↓, q′) is encoded as the clause

(isos(q), (l1, l2))↔ (isos(q′), (l1, l2))

• Transition (q, (s, s′), q′) is encoded as the clause

(isos(q), (sT :: l1, l2))↔ (isos(q′), (s′T :: l1, l2))

Lemma 4.5.6. Given two different states (resp. two letter) a1, a2 we get isos(a1)⊥ isos(a2)

Proof. Direct as each state (resp. letter) is represented by a distinct value of its type.

This lemma tells us that local / backward determinism will imply the orthogonality of
the clauses of the iso.

Corollary 4.5.7 (isos(T ) is well-typed). Given a RTM T , isos(T ) is well-typed iso of
type CT ↔ CT .

Lemma 4.5.8 (One Step Simulation). Given a RTM T , if T ` C  C ′ then

isos(T ) isos(C)→ isos(C ′)

Proof. By analysis of the transition relation.

• If (q, (l, s, r)) and (q, ↓, q′) ∈ δ then the configuration becomes (q′, (l, s, r)). In
this case, by definition we have a clause (isos(q′), (l, r)) ↔ (isos(q′), (l, r)). The
configuration C will be in state isos(q′) and so will enter this clause, the second
clause is indeed the configuration isos(C).

• If (q, (l, s, a :: r)) and (q,→, q′) ∈ δ then the configuration becomes (q′, (l · s, a, r)).

• Similar if (q,←, q′) ∈ δ
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• If (q, (l, s, r)) and (q, (s, s′), q′) ∈ δ then the configuration becomes (q′, (l, s′, r))

By translation, we have a rule of the form (isos(q′), (s :: l, r))↔ (isos(q′), (s′ :: l, r))
which directly send isos(C) to isos(C ′).

So far, isos(T ) simulates exactly one evaluation step of the Turing Machine, in order
to simulate a full run we need to define an iterator iso that will apply isos(T ) until the
configuration reached is in the final state.

Definition 4.5.9 (Iterator Iso). Let It(ω) : A↔ A⊗N be an iso parametrized by another
iso ω : A ↔ A ⊗ (1 ⊕ 1). Remember that 0 = fold injl () and S n = fold injr n of
type N = µX.1⊕X:

First define ωaux =

{
(y,>) ↔ let (z, n) = g y in (z, S n)
(y,⊥) ↔ (y, S 0)

}
Let It(ω) : A↔ A⊗ N be an iso defined as:

fix g.


x ↔ let y = ω x in

let z = ωaux y in

z


Assuming that ω is an iso of type A ↔ A ⊗ (1 ⊕ 1), then It(ω) will iterate ω until it
returns some value a,⊥, while counting the number of time it called ω.

Lemma 4.5.10 (Semantics of It(ω)). Given ω : A↔ A⊗(1⊕1) and some value `e v : A
if It(ω) v →∗ (v′, n) then ω . . . ω︸ ︷︷ ︸

n+1 times

v →∗ (v′,⊥)

Proof. By induction on n.

• 0, then It(ω) v → let y = ω v in let z = ωaux y in z →∗ let z = ωaux (v′,⊥) in z →
(v′, 0), and hence by hypothesis ω v → (v′,⊥).

• n+1: It(ω) v → let y = ω v in let z = ωaux y in z → let z = ωaux (v1,>) in z =

let z =

{
(y,>) ↔ let (z, n) = It(ω) y in (z, S n)
(y,⊥) ↔ (y, S 0)

}
(v1,>) in z →

let y = let (z, n) = It v1 in z, S n in y

Then by we know that It v1 will reduce to v′, n and so by IH we get that
ω . . . ω︸ ︷︷ ︸
n+1 times

v1 →∗ (v′,⊥), so we get ω . . . ω︸ ︷︷ ︸
n+2 times

v →∗ (v′,⊥).

With this, we just need to adapt the encoding δ to the type CT ↔ CT ⊗ (1⊕ 1):
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Definition 4.5.11 (Encoding of δ). We modify the encoding of δ to be of type CT ↔
CT ⊗ (1 ⊕ 1) to be the same but if the translation leads into the final state, the second
argument is sent to ⊥ otherwise it is sent to >. By abuse of notation, we also call this
encoding isos(T ).

The new encoding does not change the orthogonality and hence the new iso is well-
typed:

Lemma 4.5.12 (isos(δ) is well-typed). Given a RTM T , then `ω isos(δ) : CT⊗(1⊕1)↔
CT ⊗ (1⊕ 1).

Proof. Same as Corollary 4.5.7.

Finally, we get that if a Turing Machine, from an initial configuration C evaluates into
the final configuration C ′ in n+ 1 steps, then the Iterator iso on isos(δ) with input the
encoding of C reduces to the encoding of C ′ with the encoding of the number n.

Theorem 4.5.13 (Simulation of String Semantics). Let T be a RTM, if

T ` (qs, (ε, b, s)) 
n+1 (qf , (ε, b, s

′))

then

It(isos(δ)) isos(qs, ([], b, s))→∗ (isos(qf , (ε, b, s
′)), n̄)

.

Proof. Direct by Lemma 4.5.8 and Lemma 4.5.10.

4.6. Conclusion

Summary of the contribution. We presented a linear, reversible language with in-
ductive types, extending the language from [SVV18]. We showed how ensuring non-
overlapping and exhaustivity is enough to ensure the reversibility of the isos. The lan-
guage comes with both an expressivity result that shows that any Primitive Recursive
Functions can be encoded in this language as well as an interpretation of programs
into µMALL proofs. The latter result rests on the fact that our isos are structurally
recursive. We then removed the constraints of exhaustivity: while still preserving a
notion of reversibility on partial injective functions, we showed how this version of the
languages allows us to encode any Reversible Turing Machine, hence attaining Turing
Completeness.
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Future works. A first extension to our work would be to relax the structurally recursive
condition to allow for more functions to be encoded. For instance, the Cantor Pairing
N↔ N⊗ N can be encoded as:

Example 4.6.1 (Cantor Pairing).

ω1 =


〈S i, j〉 ↔ injl (〈i, S j〉)
〈0, S S j〉 ↔ injl (〈S j, 0〉)
〈0, S 0〉 ↔ injl (〈0, 0〉)
〈0, 0〉 ↔ injr ()

 : N⊗ N↔ (N⊗ N)⊕ 1

ω2 =

{
tinjl (x) ↔ let y = g x in S y
injr (x) ↔ 0

}
: (N⊗ N)⊕ 1↔ N

CantorPairing = fix g.

{
x ↔ let y = ω1 x in

let z = ω2 y in z

}
: (N⊗ N)↔ N

While the iso has the expected operational semantics, it is not well-typed as it is not
structurally recursive. One would require accepting lexicographical order (or more gen-
erally, any well-founded order) on recursive isos that act as a termination proof. And
then, see how such a criterion would be captured in terms of pre-proof validity. Along
with this, allowing for coinductive statements and terms would allow for a truly general
reversible language. This is a focus of our forthcoming research.

On a more denotational point of view, the works in collaboration with Louis Lemon-
nier [CLV21] is currently being extended to the case of the language presented in this
chapter, along to a categorical semantics, with Robin Kaarsgaard, for the quantum
version of the language from [SVV18] extended with inductive types, as done in this
chapter.

Finally, we want to consider quantum computation, by extending our language with
linear combinations of terms. We plan to study purely quantum recursive types and
generalized quantum loops: in [SVV18], lists are the only recursive type which is cap-
tured, and recursion is terminating. The logic µMALL would help in providing a finer
understanding of termination and non-termination.
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Chapter 5.

Geometry of Interaction for ZX Calculus

Abstract

Getting inspiration from the Geometry of Interaction as a Token Machine, we in-
troduce a Token Machine for the ZX-Calculus and its extension to mixed-processes.
We show how the Token Machine captures the denotational semantics of the ZX-
Calculus. We then discuss variants of the token machine, in particular in the context
of Sum-Over-Paths semantics.

References: Results of this chapter have been published in the paper Geometry of
Interaction for ZX-Calculus at MFCS 2021 [CVV21].

5.1. Introduction

As seen previously, the standard models of both quantum circuits and the ZX-Calculus
is based on linear operators in some Hilbert space, most often described with a matrix
interpretation. An alternative operational interpretation of quantum circuits following
a particle-style semantics has recently been investigated in the literature [Dal17]. In
this model, quantum bits are intuitively seen as tokens flowing inside the wires of the
circuit. Formally, a quantum circuit is interpreted as a token-based automata, based
on Geometry of Interaction (GoI) [Gir89b; Gir89a; Gir88; Gir95; Gir06; Gir11; Gir13].
This framework is used in [Dal17] to formalize the notion of qubits-as-tokens flowing
inside a higher-order term representing a quantum computation—that is, computing a
quantum circuit. However, in this work, quantum gates are still regarded as black-boxes,
and tokens are purely classical objects requiring synchronicity : to fire, a two-qubit gate
needs its two arguments to be ready.

As a summary, despite their ad-hoc construction, quantum circuits can be seen from
two perspectives: computation as a flow of particles (i.e., tokens), and as a wave passing
through the gates, i.e. the standard vectorial state representation. On the other hand,
although ZX-Calculus is a well-established language, it still misses such a particle-style
perspective.
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In this chapter, we aim at giving a novel insight on the computational content of a
ZX term in an asynchronous way, emphasizing the non-locality of the behaviour of a
ZX-computation.

Following the idea of using a token machine to exhibit the computational content of
a proof-net or a quantum circuit, we present in this chapter a token machine for the
ZX-Calculus. To exemplify the versatility of the approach, we show how to extend it to
mixed processes [CP12; Car+19] and to the Sum-Over-Path semantics, the development
for both perspectives being very similar. Those two perspectives are related to the
notion of particle-style and wave-style semantics, similarly to what has been done for
quantum circuits [Dal17]. To assess the validity of the semantics, we show how it links
to the standard interpretation of ZX-diagrams. While the standard interpretation of
ZX-diagrams proceeds with conventional graph rewriting, the tokens flowing inside the
diagram do not modify it, and the computation emerges from the ability of tokens to be
in superposition.

This ability illustrates one fundamental difference between our approach and the one
in [Dal17]. The latter follows a classical control approach: if qubits can be in super-
position, each qubit inhabits a token sitting in one single position in the circuit. For

instance, on the circuit below, the state of the two tokens |••〉 is
√

2
2 (|00〉 + |10〉). Al-

though the two tokens can be regarded as being in superposition, their position is not.
In our system, tokens and positions can be superposed.

H

H

|0〉

|0〉

1

2 C
N
O
T

The second fundamental difference lies in the asynchronicity of our token-machine. Un-
like [Dal17], we rely on the canonical generators of ZX-diagrams: tokens can travel
through these nodes in an asynchronous manner. For instance, in the above circuit the
orange token must wait for the blue token before crossing the CNOT gate. As illus-
trated Table 5.1, in our system one token can interact with multi-wire nodes. Finally, as
formalized in Theorem 5.3.25, a third difference is that compared to [Dal17], the token-
machine we present is non-oriented : in the circuit above, tokens have to start on the
left and flow towards the right of the circuit whereas our system is agnostic on where
tokens initially “start”.

Organization of the chapter The chapter is organized as follows: in Section 5.3 we
present the first token machine, with the rewriting invariant needed to obtain confluence,
termination and the relation with the standard interpretation of the ZX-Calculus, then
in Section 5.4 we consider the extension of mixed-processes and relate the new token
machine with the previous one through the use of the map CPM. Then we briefly discuss
two variations of the token machine in Section 5.5. Finally, in Section 5.6 we present
the Sum-Over-Paths semantics token machine.
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5.2. Notions of Graph Theory in ZX

In order to work with our token machine, we need to attribute to each wire of the
ZX-Diagram a name, given as such:e0,

e0 e1
, e0 e1, e0 e1,

...
e1 en

e′1 e′m

...
α ,

e0

e1

n,m∈N
α∈R
ei,e
′
i∈E

We shall be using the following labelling convention: wires (edges) are labelled with
ei, taken from an infinite set of labels E . We take for granted that distinct wires have
distinct labels. We write E(D) for the set of edge labels in the diagram D, and I(D)
(resp. O(D)) for the list of input edges (resp. output edges) of D.

We need to have a special treatment of edge labels when composing two diagrams D2

and D1:

For the sequential composition D2 ◦ D1 we need to do a relabelling of the input edges
of the bottom diagram by the output labels of the top diagram, we also require that
E(D2 ◦D1) = E(D1) ∪ E(D2)\I(D2), I(D2 ◦D1) = I(D1) and O(D2 ◦D1) = O(D2).

While for the parallel composition we require that E(D2⊗D1) = E(D1)∪E(D2), I(D2⊗
D1) = I(D2) ∪ I(D1) and O(D2 ⊗D1) = O(D2) ∪ O(D1).

Remind that we assume that E(D1) ∩ E(D2) = ∅

Theorem 2.1.5 is essential: it allows us to transpose notions of graphs into ZX-Calculus.
It is for instance possible to define a notion of connectivity.

Definition 5.2.1 (Connected Components). Let D be a non-empty ZX-diagram. Con-
sider all the possible decompositions with D1, ..., Dn ∈ ZX and σ, σ′ permutations of
wires:

D =
...
D1

σ′...

...
σ
...

...
Dk

...
...

The largest such k is called the number of connected components of
D. It induces a decomposition. The induced D1, ..., Dn are called the
connected components of D. If D has only one connected component,
we say that D is connected.

We can also consider the notions of paths, distance and cycles of usual multi-graphs.
We denote Paths(e, e′) the set of paths from edge e to e′. The set of paths (resp. cycles)
of a diagram D is denoted by Paths(D) (resp. Cycles(D)). For a path p, we denote |p|
its length. We denote d(e, e′) the distance i.e. the length of the shortest path between e
and e′.

In the remainder of the thesis, we omit the edge labels when not necessary.
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5.3. A Token Machine for ZX-diagrams

Inspired by the Geometry of Interaction [Gir89b; Gir89a; Gir88; Gir95; Gir06; Gir11;
Gir13] and the associated notion of token machine [DR99; AL95] for proof nets [Gir96],
we define here a first token machine on pure ZX-diagrams. A token consists of an edge
of the diagram, a direction (either going up, noted ↑, or down, noted ↓) and a bit
(state). The idea is that, starting from an input edge the token will traverse the graph
and duplicate itself when encountering an n-ary node (such as the green and red node)
into each of the input / output edges of the node. Notice that it is not the case for
token machines for proof-nets where the token never duplicates itself. This duplication
is necessary to make sure we capture the whole linear map encoded by the ZX-diagram.
Due to this duplication, two tokens might collide together when they are on the same
edge and going in different directions. The result of such a collision will depend on
the states held by both tokens. For a cup, cap or identity diagram, the token will
simply traverse it. As for the Hadamard node the token will traverse it and become a
superposition of two tokens with opposite states. Therefore, as tokens move through a
diagram, some may be added, multiplied together, or annihilated.

Definition 5.3.1 (Tokens and Token States). Let D be a ZX-diagram. A token in D is
a triplet (e, d, b) ∈ E(D) × {↓, ↑} × {0, 1}. We shall omit the commas and simply write
(e d b). The set of tokens on D is written tk(D). A token state s is then a multivariate
polynomial over C, evaluated in tk(D). We define tkS(D) := C[tk(D)] the algebra of
multivariate polynomials over tk(D).

In the token state t =
∑

i αi t1,i · · · tni,i, where the tk,i’s are tokens, the components
αi t1,i · · · tni,i are called the terms of t.

A monomial (e1 d1, b1) · · · (en dn, bn) encodes the state of n tokens in the process of
flowing in the diagram D. A token state is understood as a superposition —a linear
combination— of multi-tokens flowing in the diagram.

Convention 5.3.2. In token states, the sum (+) stands for the superposition while
the product stands for additional tokens within a given diagram. We follow the usual
convention of algebras of polynomials: for instance, if ti stands for some token (ei di bi),
then (t1 + t2)t3 = (t1t2) + (t1t3), that is, the superposition of t1,t2 flowing in D and
t1,t3 flowing in D. Similarly, we consider token states modulo commutativity of sum
and product, so that for instance the monomial t1t2 is the same as t2t1. Notice that 0 is
an absorbing element for the product (0× t = 0) and that 1 is a neutral element for the
same operation (1× t = t).

Example 5.3.3. Given D =

...
e1 en

e′1 e′m

...
α then (e1 ↑ 0)(e2 ↑ 1) + (e′3 ↓ 1) is a token state on D.
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e0 (e0 ↓ x)(e0 ↑ x) c 1 (e0 ↓ x)(e0 ↑ ¬x) c 0 (Positive/Negative Collision)

e0 e1 (eb ↓ x) d (e¬b ↑ x) ( -diffusion)

e0 e1 (eb ↑ x) d (e¬b ↓ x) ( -diffusion)

(ek ↓ x) d e
iαx
∏
i 6=k

(ei ↑ x)
∏
j

(e′j ↓ x)

(e′k ↑ x) d e
iαx
∏
j 6=k

(e′j ↓ x)
∏
i

(ei ↑ x)

(e0 ↓ x) d (−1)x
1√
2

(e1 ↓ x) +
1√
2

(e1 ↓ ¬x)

(e1 ↑ x) d (−1)x
1√
2

(e0 ↑ x) +
1√
2

(e0 ↑ ¬x)

...
e1 en

e′1 e′m

...
α

e0

e1

( -Diffusion)

(
...

... -Diffusion)

Table 5.1.: Asynchronous token-state evolution, for all x, b ∈ {0, 1}

5.3.1. Diffusion and Collision Rules

The tokens in a ZX-diagram D are meant to move inside D. The set of rules pre-
sented in this section describes an asynchronous evolution, meaning that given a token
state, we will rewrite only one token at a time. The synchronous setting is discussed in
Section 5.5.2.

Definition 5.3.4 (Asynchronous Evolution). Token states on a diagram D are equipped
with two transition systems:

• a collision system ( c), whose effect is to annihilate tokens;

• a diffusion system ( d), defining the flow of tokens within D.

The two systems are defined as follows. With X ∈ {d, c} and 1 ≤ j ≤ ni, if ti,j are
tokens in tk(D), then using Convention 5.3.2,∑

i

αiti,1 · · · ti,j · · · ti,ni  X

∑
i

αiti,1 · · ·

(∑
k

βkt
′
k

)
· · · ti,ni

provided that ti,j  X
∑

k βkt
′
k according to the rules of Table 5.1. In the table, each rule

corresponds to the interaction with the primitive diagram constructor on the left-hand-
side. Variables x and b span {0, 1}, and ¬ stands for the negation. In the green-spider
rules, eiαx stands for the complex number cos(αx) + i sin(αx) and not an edge label.

Finally, as it is customary for rewrite systems, if (→) is a step in a transition system,
(→∗) stands for the reflexive, transitive closure of (→).

We do not give the rewriting rule for the red-spider since it can be recovered by Con-
vention 2.1.1, for reference one can check that the rules in Table 5.2 are correct.
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α

a

(a ↓ x) d
1√
2

(
1 + (−1)xeiα

)
α

a

b c

(a ↓ x) d
1

2
√

2

∑
y,z

(
1 + (−1)x+y+zeiα

)
(b ↓ y)(c ↓ z)

Table 5.2.: Samples of asynchronous token-state evolution for red spiders

We aim at a transition system marrying both collision and diffusion steps. However, for
consistency of the system, the order in which we apply them is important as illustrated
by the following example.

Example 5.3.5. Consider the equality given by the ZX equational theories: = .

If we drop a token with bit 0 at the top, we hence expect to get a single token with bit 0
at the bottom. We underline the token that is being rewritten at each step. This is what
we get when giving the priority to collisions:

a

d

b c (a ↓ 0) d (b ↓ 0)(c ↓ 0) d (d ↓ 0)(c ↑ 0)(c ↓ 0) c (d ↓ 0)

Notice that the collision (c ↑ 0)(c ↓ 0) rewrites to 1, and therefore the product (d ↓
0) × 1 = (d ↓ 0). If however we decide to ignore the priority of collisions, we may end
up with a non-terminating run, unable to converge to (d ↓ 0):

(a ↓ 0) d (b ↓ 0)(c ↓ 0) d (d ↓ 0)(c ↑ 0)(c ↓ 0) d (d ↓ 0)(a ↑ 0)(b ↓ 0)(c ↓ 0) d . . .

We therefore set a rewriting strategy as follows.

Definition 5.3.6 (Collision-Free). A token state s of tkS(D) is called collision-free if
for all s′ ∈ tkS(D), we have s 6 c s

′.

Definition 5.3.7 (Token Machine Rewriting System). We define a transition system
 as exactly one  d rule followed by all possible  c rules. In other words, t  u if
and only if there exists t′ such that t d t

′  ∗c u and u is collision-free.

In [Dal17], a token arriving at an input of a gate is blocked until all the inputs of
the gates are populated by a token, at which point all the tokens go through at once
(while obviously changing the state). The control is purely classical: it is causal. In
our approach, the state of the system is global and there is no explicit notion of qubit.
Instead, tokens collect the operations that are to be applied to the input qubits.
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5.3.2. Strong Normalization and Confluence

The token machine Rewrite System of Definition 5.3.7 ensures that the collisions that
can happen always happen. The system does not a priori forbid two tokens on the same
edge, provided that they have the same direction. However, this is something we want
to avoid as there is no good intuition behind it: we want to link the token machine to
the standard interpretation, which is not possible if two tokens can appear on the same
edge.

In this section we show that, under a notion of well-formedness characterizing token’s
uniqueness on each edge, the Token State Rewrite System ( ) is strongly normalizing
and confluent.

Definition 5.3.8 (Polarity of a Term in a Path). Let D be a ZX-diagram, and p ∈
Paths(D) be a path in D. Let t = (e, d, x) ∈ tk(D). Then:

P (p, t) =


1 if e ∈ p and e is d-oriented

−1 if e ∈ p and e is ¬d-oriented

0 if e /∈ p
We extend the definition to subterms α t1...tm of a token-state s:

P (p, 0) = P (p, 1) = 0, P (p, α t1...tm) = P (p, t1) + ...+ P (p, tm).
In the following, we shall simply refer to such subterms as “ terms of s”.

Example 5.3.9. In the (piece of) diagram presented below, the blue directed line p =
(e0, e1, e2, e3, e4) is a path. The orientation of the edges in the path is represented by the
arrow heads, and e3 for instance is ↓-oriented in p which implies that we have P (p, (e3 ↑
x)) = −1.

e0
e1

e2 e3
e4

Definition 5.3.10 (Well-formedness). Let D be a ZX-diagram, and s ∈ tkS(D) a
token state on D. We say that s is well-formed if for every term t in s and every path
p ∈ Paths(D) we have P (p, t) ∈ {−1, 0, 1}.

Intuitively, this definition tells us that when we have multiple tokens on the same path,
they will all collide with each other until there is at most one left, going in either
direction.

Proposition 5.3.11 (Invariance of Well-Formedness). Well-formedness is preserved by
( ): if s ∗ s′ and s is well-formed, then s′ is well-formed.
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Proof. Let D be a ZX-diagram, and s be a well-formed token state on D. Consider a
rewrite s s′. We want to show that for all paths p in D, if P (p, t) ∈ {−1, 0, 1} for all
terms t of s, then P (p, t′) ∈ {−1, 0, 1} for all terms t′ in s′.

Let t be a term of s, and e0 be the edge where a rewriting occurs. If the rewriting does
not affect t, then the well-formedness of t obviously holds. If it does, and t c,d

∑
q tq,

we have to check two cases:

• Collision: let p ∈ Paths(D). If no token remains in the term tq, then P (p, tq) = 0.
Otherwise:

– if e0 /∈ p, then P (p, tq) = P (p, t) = 0;

– if e0 ∈ p, then P (p, tq) = P (p, t)+1−1 because the two tokens have alternating
polarity.

• Diffusion: let p ∈ Paths(D), and (e0, d, x)  d
∑

q λq
∏
i∈S(ei, di, xi,q) (this cap-

tures all possible diffusion rules).

– if e0 /∈ p and ∀i ∈ S, ei /∈ p, then P (p, tq) = P (p, t);

– if e0 ∈ p and ∃k1, . . . , kn ∈ S such that ∀i ∈ {1, . . . , n}, eki ∈ p then we want
to show that P (p, (e0, d, x)) =

∑
i∈{1,...,n} P (p, (eki , di, xi)). For that, consider

a subpath forming a cycle c between ki and kj , both ki and kj will have a
token on it as the result of the diffusion rule of e0, then we can reason by case
analysis on the orientation of the path on ki and kj , and it can be shown that
in everything case we have P (c, (ki, di, xi)) +P (c, (kj , dj , xj)) = 0. Hence the
polarity on the whole path p is preserved;

– if e0 ∈ p and ∀i, ei /∈ p, then, either (i) p ends with e0 and e0 is d-oriented
in p, or (ii) p starts with e0 and e0 is ¬d-oriented in p. In both cases, since
that p \ {e0} is still a path, we have P (p \ {e0}, t) ∈ {−1, 0, 1} and since
P (p, tq) = P (p \ {e0}, t), we deduce that tq is still well-formed;

– if e0 /∈ p but ∃k ∈ S, ek ∈ p, either ek is an endpoint of p, or ∃k′, ek′ ∈ p. In
the latter case, the tokens in ek and ek′ will have alternating polarity in p, so
∀q, P (p, tq) = P (p, t) + 1− 1. In the first case, we can show in a way similar
to the previous point, that P (p, tq) = P (p \ {ek}, t) ∈ {−1, 0, 1}.

Well-formedness prevents the unwanted scenario of having two tokens on the same wire,
and oriented in the same direction (e.g. (e0 ↓ x)(e0 ↓ y)). As shown in the Proposi-
tion 5.3.12, this property is in fact stronger.

Proposition 5.3.12 (Full Characterization of Well-Formed Terms). Let D be a ZX-
diagram, and s ∈ tkS(D) be ill-formed, i.e. there exists a term t in s, and p ∈ Paths(D)
such that |P (p, t)| ≥ 2. Then we can rewrite s s′ such that a term in s′ has a product
of at least two tokens of the form (e0, d, ).
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Proof. Let t be a term in s, and p = (e0, ..., en) such that P (p, t) ≥ 2. We can show
that we can rewrite t into a token state with term t′ = (ei, d, )(ei, d, )t′′. We do so by
induction on n = |p| − 1.

If n = 0, we have a path constituted of one edge, such that |P (p, t)| ≥ 2. Even after doing
all possible collisions, we are left with |P (p, t)| tokens on e0, and oriented accordingly.

For n+ 1, we look at e0, build p′ := (e1, ..., en), and distinguish four cases.

• If there is no token on e0, we have P (p′, t) = P (p, t), so the result is true by
induction hypothesis on p′.

• If we have a product of at least two tokens going in the same direction, the result
is directly true.

• If we have exactly one token going in each direction, we apply the collision rules,
and therefore we have P (p′, t) = P (p, t), so the result is true by induction hypoth-
esis on p′.

• Finally, if we have exactly one token (e0, d, ) on e0, either e0 is not d-oriented, in
which case P (p′, t) = P (p, t) + 1, or e0 is d-oriented, in which case the adequate
diffusion rule on (e0, d, ) will rewrite t 

∑
q tq with P (p′, tq) = P (p, t).

Although well-formedness prevents products of tokens on the same wire, it does not
guarantee termination: for this we need to consider polarities along cycles.

Proposition 5.3.13 (Invariant on Cycles). Let D be a ZX-diagram, and c ∈ Cycles(D)
a cycle. Let t1, . . . , tn be tokens, and s be a token state such that t1...tn  ∗ s. Then for
every non-null term t in s we have P (c, t1...tn) = P (c, t).

Proof. The proof can be adapted from the previous one, by forgetting the cases related
to the endpoint of the paths, as well as the null terms (which can arise from collisions). It
can then be observed that the quantity P in this simplified setting is more than bounded
to {−1, 0, 1}, but preserved.

This proposition tells us that the polarity is preserved inside a cycle. By requiring the
polarity to be 0, we can show that the token machine terminates. This property is
defined formally in the following.

Definition 5.3.14 (Cycle-Balanced Token State). Let D be a ZX-diagram, and t a term
in a token state on D. We say that t is cycle-balanced if for all cycles c ∈ Cycles(D)
we have P (c, t) = 0. We say that a token state is cycle-balanced if all its terms are
cycle-balanced.

103



Chapter 5. Geometry of Interaction for ZX Calculus

To show that being cycle-balanced implies termination, we need the following interme-
diate lemma. This essentially captures the fact that a token in the diagram comes from
some other token that “travelled” in the diagram earlier on.

Lemma 5.3.15 (Rewinding). Let D be a ZX-diagram, and t be a term in a well-formed
token state on D, and such that t ∗

∑
i λiti, with (en, d, x) ∈ t1. If t is cycle-balanced,

then there exists a path p = (e0, ..., en) ∈ Paths(D) such that en is d-oriented in p, and
P (p, t) = 1.

Proof. We reason by induction on the length k of the rewrite that leads from t to
∑

i λiti.

If k = 0, we have (en, d, x) ∈ t, so the path p := (en) is sufficient.

For the induction case, k = n + 1, suppose t  
∑

i λiti, and t1  n
∑

j λ ′jt
′
j (hence

t  n+1
∑

i 6=1 λiti +
∑

j λ ′jt
′
j), with (en, d, x) ∈ t′1. By induction hypothesis, there is

p = (e0, ..., en) such that P (p, t1) = 1. We now need to look at the first rewrite from t.

• if the rewrite concerns a generator not in p, then P (p, t) = P (p, t1) = 1;

• if the rewrite is a collision, then P (p, t) = P (p, t1) = 1;

• if the rewrite is (e, de, xe) 
∑

q λq
∏
i(e
′
i, di, xi,q)

– If e ∈ p and e′1 ∈ p, then P (p, t) = P (p, t1) = 1.

– If e′1 ∈ p and e′2 ∈ p, then P (p, t) = P (p, t1)− 1 + 1 = 1.

– The case e ∈ p and ∀i, e′i /∈ p is impossible:

∗ if e is not de-oriented in p, it means e = e0, hence P ((e1, ..., en), t) =
P (p, t) + 1 = 2 which is forbidden by well-formedness;

∗ if e is de-oriented in p, it means e = en, which would imply that P (p, t1) =
0.

– If e /∈ p and e′1 ∈ p and ∀i 6= 1, e′i /∈ p, then P (e :: p, t) = P (p, t1) = 1,
since well-formedness prevents the otherwise possible situation P (e :: p, t) =
P (p, t1) + 1 = 2. However, e :: p may not be a path any more. If c =
(e, e0, ..., e`) forms a cycle, then, since P (c, t) = 0, we can simply keep the
path p′ := (e`+1, ..., en) with P (p′, t) = 1.

We can now prove strong-normalization.

Theorem 5.3.16 (Termination of well-formed, cycle-balanced token state). Let D be a
ZX-diagram, and s ∈ tkS(D) be well-formed. The token state s is strongly normalizing
if and only if it is cycle-balanced.
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Proof. [⇒]: Suppose ∃c ∈ Cycles(D) and t a term of s such that P (c, t) 6= 0. By well-
formedness, P (c, t) ∈ {−1, 1}. Any terminal term t′ has P (c, t′) = 0, so by preservation
of the quantity P (c, ), t (and henceforth s) cannot terminate.

[⇐]: We are going to show for the reciprocal that, if t is well-formed, and if the con-
straint P (c, t) = 0 is verified for every cycle c, then any generator in the diagram can be
visited at most once. More precisely, we show that if a generator is visited in a term t,
then it cannot be visited any more in all the terms derived from t. However, the same
generator can be visited once for each superposed term (e.g. once in t1 and once in t2
for the token state t1 + t2).
Consider an edge e with token exiting generator g in the term t. Suppose, by contradic-
tion, that a token will visit g again in t′ (obtained from t), by edge en with orientation d.
By Lemma 5.3.15, there exists a path p = (e0, ..., en) such that P (p, t) = 1 and en is d-
oriented. Since e /∈ p (we would not have a path then), then p′ := (e0, ..., en, e) is a path
(or possibly a cycle) such that P (p′, t) = 2. This is forbidden by well-formedness. Hence,
every generator can be visited at most once. As a consequence, the lexicographic order
(#g,#tk) (where #g is the number of non-visited generators in the diagram, and #tk
the number of tokens in the diagram) strictly reduces with each rewrite. This finishes
the proof of termination.

Intuitively, this means that tokens inside a cycle will cancel themselves out if the token
state is cycle-balanced. Since cycles are the only way to have a non-terminating token
machine, we are sure that our machine will always terminate.

Example 5.3.17. Going back to the diagram from Example 5.3.5:

a

d

b c consider the

token state (b ↓ 0)(c ↑ 0) we get that the polarity in the cycle (b, c, b) is 2 and hence the
token state will not terminate, which is indeed the case as:

(b ↓ 0)(c ↑ 0) d (b ↓ 0)(b ↓ 0)(a ↑ 0) d (b ↓ 0)(c ↑ 0)(d ↓ 0)(a ↑ 0)

The tokens (b ↓ 0) and (c ↑ 0) will never collide, hence termination cannot be ensured.

Proposition 5.3.18 (Local Confluence). Let D be a ZX-diagram, and s ∈ tkS(D) be
well-formed and collision-free. Then, for all s1, s2 ∈ tkS(D) such that s1

 s  s2,
there exists s′ ∈ tkS(D) such that s1  ∗ s′ ∗  s2.

Proof. We are going to reason on every possible pair of rewrite rules that can be applied
from a single token state s. Notice first, that if the two rules are applied on two different
terms of s, such that the rewriting of a term creates a copy of the other, they obviously

commute, so
s  s2  

s1  s′
.
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In the case where s = αt+ βt1 + s0 such that t1  s′ and t 
∑

i λiti, we have:

 αt+ βs′ + s0  
∑

i αλiti + βs′ + s0

s

 

 (αλ1 + β)t1 +
∑

i 6=1 αλiti + s0  (αλ1 + β)s′ +
∑

i 6=1 αλiti + s0

Then, we can, in the following, focus on pairs of rules applied on the same term.
The term we focus on is obviously collision-free, by hypothesis and by preservation of
collision-freeness by  .

Suppose the two rewrites are applied on tokens at positions e and e′. We may reason
using the distance between the two edges.

• The case d(e, e′) = 0 would imply a collision, which is impossible by collision-
freeness;

• if d(e, e′) ≥ 3, the two rules still do not interfere, they commute (up to collisions
which do not change the result);

• if d(e, e′) = 2, there will be common collisions (i.e. collisions between tokens created
by each of the diffusions), however, the order of application of the rules will not
change the bits in the tokens we will apply a collision on, so the result holds;

• if d(e, e′) = 1, then the two tokens have to point to the same generator. If they
didn’t, (e, e′) would form a path such that |P ((e, e′), t)| = 2 which is forbidden by
well-formedness. We can then show the property for all generators:

Case e0 e1.

(e0 ↓ x)(e1 ↓ x′)  d (e1 ↑ x)(e1 ↓ x′) 

d

 

c
(e0 ↓ x)(e0 ↑ x′)  c

〈
x x′

〉
Case e0 e1: similar.

Case

...
e1 en

e′1 e′m

...
α .

eiαx
∏
i 6=1(ei ↑ x)

∏
i(e
′
i ↓ x)(e′1 ↑ x′)  c

 d
〈
x x′

〉
eiαx

∏
i 6=1(ei ↑ x)

∏
i 6=1(e′i ↓ x)

(e1 ↓ x)(e′1 ↑ x′) | |

 

d

〈
x x′

〉
eiαx

′∏
i 6=1(ei ↑ x′)

∏
i 6=1(e′i ↓ x′)

eiαx
′∏

i(ei ↑ x′)
∏
i 6=1(e′i ↓ x)(e1 ↓ x)  c
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Case

e0

e1

.

1√
2

((−1)x(e1 ↓ x)(e1 ↑ x′) + (e1 ↓ ¬x)(e1 ↑ x′))  2
c

 d
1√
2

(
(−1)x

〈
x x′

〉
+
〈
¬x x′

〉)
(e0 ↓ x)(e1 ↑ x′) | |

 

d
1√
2

(
(−1)x

′ 〈
x x′

〉
+
〈
x ¬x′

〉)
1√
2

(
(−1)x

′
(e0 ↓ x)(e0 ↑ x′) + (e0 ↓ x)(e0 ↑ ¬x′)

)
 

2
c

Using Newmann’s Lemma [New42] that states that any terminating and locally confluent
rewriting system is confluent, we obtain the confluence of our rewriting system:

Corollary 5.3.19 (Confluence). Let D be a ZX-diagram. The rewrite system  is
confluent for well-formed and cycle-balanced token states.

Corollary 5.3.20 (Uniqueness of Normal Forms). Let us consider a ZX-diagram D.
A well-formed and cycle-balanced token state admits a unique normal form under the
rewrite system  .

5.3.3. Semantics and Structure of Normal Forms

In this section, we discuss the structure of normal forms, and relate the system to the
standard interpretation presented in Section 2.1.

Proposition 5.3.21 (Single-Token Input). Let D : n→ m be a connected ZX-diagram
with I(D) = [ai]0<i≤n and O(D) = [bi]0<i≤m, 0 < k ≤ n and x ∈ {0, 1}, such that:

JDK ◦ (idk−1 ⊗ |x〉 ⊗ idn−k) =
2m+n−1∑
q=1

λq |y1,q, ..., ym,q〉〈x1,q, ..., xk−1,q, xk+1,q, ..., xn,q|

Then: (ak ↓ x) ∗
2m+n−1∑
q=1

λq

∏
i

(bi ↓ yi,q)
∏
i 6=k

(ai ↑ xi,q)

Proof. Let us first notice that, using the map/state duality, we have

(ak ↓ x) ∗
2m+n−1∑
q=1

λq

∏
i

(bi ↓ yi,q)
∏
i 6=k

(ai ↑ xi,q)

107



Chapter 5. Geometry of Interaction for ZX Calculus

in D iff we have

(ak ↓ x) ∗
2m+n−1∑
q=1

λq

∏
i

(bi ↓ yi,q)
∏
i 6=k

(a′i ↓ xi,q)

in D′ where D′
...

:=
...D

... ...

ak ak

a′1 a′n

. Hence, we can, w.l.o.g. consider in the following

that n = 1. We also notice that, thanks to the confluence of the rewrite system, we can
consider diagrams up to ”topological deformations”, and hence ignore cups and caps.

We then proceed by induction on the number N of “non-wire generators” (i.e. Z-spider,
X-spiders and H-gates) of D, using the fact that the diagram is connected:

If N = 0, then D = , where the result is obvious.

If N = 1, then D ∈

, , α
...

...
, α

...

...

. The result in this base case is then a

straightforward verification (self-loops in green and red nodes simply give rise to collisions
that are handled as expected).

For N + 1, there exists D′ with N non-wire generators such that

D ∈

 D′
...

, D′
...

...
α

, D′
...

...
α


(we should actually take into account the self-loops, but they do not change the result).
Let us look at the first two cases, since the last one can be induced by composition.

If D = D′
...

a

a′

b1 bm

, then D′ is necessarily connected, by connectivity of D. Then:

(a ↓ x) 
(−1)x√

2
(a′ ↓ x) +

1√
2

(a′ ↓ ¬x)

 ∗
(−1)x√

2

2m∑
q=1

λq

m∏
i=1

(bi ↓ yi,q) +
1√
2

2m∑
q=1

λ
′
q

m∏
i=1

(bi ↓ yi,q)

=

2m∑
q=1

λ ′q + (−1)xλq√
2

m∏
i=1

(bi ↓ yi,q)
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whereby induction hypothesis

q
D′

y
|x〉 =

2m∑
q=1

λq |y1,q, ..., ym,q〉

and
q
D′

y
|¬x〉 =

2m∑
q=1

λ
′
q |y1,q, ..., ym,q〉

so:

JDK |x〉 =
q
D′ ◦H

y
|x〉 =

q
D′

y
◦ JHK |x〉 =

q
D′

y
◦
(

(−1)x√
2
|x〉+

1√
2
|¬x〉

)
=

(−1)x√
2

q
D′

y
|x〉+

1√
2

q
D′

y
|¬x〉 =

2m∑
q=1

λ ′q + (−1)xλq√
2

|y1,q, ..., ym,q〉

which is the expected result.

Now, if D = D′
...

...
α

, we can decompose D′ in its connected components:

D = D′
...

...
α

= ...
D1

σ
...

...

...
Dk

...
...

α

a

a1,1 a1,n1

ak,nkak,1

b1 bmbm1
bm−mk

with Di connected. Then:

(a ↓ x) eiαx
∏
`

∏
i

(a`,i ↓ x)

 ∗ eiαx
∏
`

2m`+n`−1∑
q=1

λq,`

∏
i 6=1

(a`,i ↓ x)(a`,i ↑ x`,i,q)
∏
i

(b`,i ↓ y`,i,q)


 ∗ eiαx

∏
`

2m`+n`−1∑
q=1

λq,`δx,x`,i,q
∏
i

(b`,i ↓ y`,i,q)


= eiαx

∏
`

2m`∑
q=1

λ
′
q,`

∏
i

(b`,i ↓ y`,i,q)


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= eiαx
2m1∑
q1=1

...
2mk∑
qk=1

λ
′
q1,1...λ

′
qk,k

∏
i

(b1,i ↓ y1,i,q1)...
∏
i

(bk,i ↓ yk,i,qk)

=
2m∑
q=1

λ
′
q

∏
i

(bi ↓ yi,q)

where the first is the diffusion through a Z-spider, and the second set of rewrites is the
induction hypothesis applied to each connected component.

JDK |x〉 =
q
(D1 ⊗ ...⊗Dk) ◦ Z1

k(α)
y
|x〉 = (JD1K⊗ ...⊗ JDkK) ◦

q
Z1
k(α)

y
|x〉

= eiαx(JD1K⊗ ...⊗ JDkK) ◦ |x, ..., x〉 = eiαx JD1K |x, ..., x〉 ⊗ ...⊗ JDkK |x, ..., x〉

= eiαx

2m1+n1−1∑
q1

λq1,1 |y1,1,q1 , ..., y1,m1,q1〉
〈
x1,2,q1 , ..., x1,n1,q1 x, ..., x

〉⊗
...⊗

2mk+nk−1∑
qk

λqk,k |yk,1,q1 , ..., yk,m1,qk〉
〈
xk,2,qk , ..., xk,n1,qk x, ..., x

〉
= eiαx

2m1+n1−1∑
q1

λq1,1

∏
i

δx,x1,i,q1 |y1,1,q1 , ..., y1,m1,q1〉

⊗
...⊗

2mk+nk−1∑
qk

λqk,k

∏
i

δx,xk,i,qk |yk,1,q1 , ..., yk,m1,qk〉


= eiαx

(
2m1∑
q1

λ
′
q1,1 |y1,1,q1 , ..., y1,m1,q1〉

)
⊗ ...⊗

(
2mk∑
qk

λ
′
qk,k
|yk,1,q1 , ..., yk,m1,qk〉

)

=
2m∑
q=1

λ
′
q |y1,q, ..., ym,q〉

where the third line is obtained by induction hypothesis, and all λ ′ match the ones
obtained from the rewrite of token states.

This proposition conveys the fact that dropping a single token in state x on wire ak
gives the same semantics as the one obtained from the standard interpretation on the
ZX-diagram, with wire ak connected to the state |x〉.

Proposition 5.3.21 can be made more general. However, we first need the following result
on ZX-diagrams:

Lemma 5.3.22 (Universality of Connected ZX-Diagrams). Let f : C2n → C2m. There
exists a connected ZX-diagram Df : n→ m such that JDf K = f .
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Proof. There exist several methods to build a diagram Df such that JDf K = f , using the
universality of quantum circuits together with the map/state duality [CD11], or using
normal forms [JPV19]. The novelty here is that the diagram should be connected. This
problem can be fairly simply dealt with:

Suppose that we have such a Df that has several connected components. We can turn
it into an equivalent diagram that is connected. Let us consider two disconnected com-
ponents of Df . Each of these disconnected components either has at least one wire, or
is one of { α , α}. In either case, we can use the rules of ZX ((Ig) or (H)) to force the
existence of a green node. These green nodes in each of the connected components can
be “joined” together like this:

α β
... ... =

α β
... ...

It is hence possible to connect every different connected components of a diagram in a
way that preserves the semantics.

Proposition 5.3.23 (Multi-Token Input). Let D be a connected ZX-diagram with
I(D) = [ai]1≤i≤n and O(D) = [bi]1≤i≤m; with n ≥ 1.

If: JDK ◦

 2n∑
q=1

λq |x1,q, ..., xn,q〉

 =
2m∑
q=1

λ
′
q |y1,q, ..., ym,q〉

then:
2n∑
q=1

λq

n∏
i=1

(ai ↓ xi,q) ∗
2m∑
q=1

λ
′
q

m∏
i=1

(bi ↓ yi,q)

Proof. Using Lemma 5.3.22, there exists a connected ZX-diagram D′ with I(D′) = [a′]
and such that JD′K |0〉 =

∑2n

q=1 λq |x1,q, ..., xn,q〉. Consider now a derivation from the
token state (a′ ↓ 0) in D ◦D′:

...

...
D

a1 an

b1 bm

D′

a′

(a′ ↓ 0) ∗
∑2n

q=1 λq
∏n
i=1(ai ↓ xi,q)

and
(a′ ↓ 0) ∗

∑2m

q=1 λ ′q
∏m
i=1(bi ↓ yi,q)

The first run comes from Proposition 5.3.21 on D′ which is connected. The second run
results from Proposition 5.3.21 on D ◦D′ which is also connected. The proposition also
gives us that:

JDK ◦

 2n∑
q=1

λq |x1,q, ..., xn,q〉

 = JDK ◦
q
D′

y
◦ |0〉 =

q
D ◦D′

y
◦ |0〉 =

2m∑
q=1

λ
′
q |y1,q, ..., ym,q〉

Finally, by confluence in D ◦D′, we get
∑2n

q=1 λq
∏n
i=1(ai ↓ xi,q)  ∗

∑2m

q=1 λ ′q
∏m
i=1(bi ↓

yi,q) in D.
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Example 5.3.24 (CNOT). In the ZX-Calculus, the CNOT-gate (up to some scalar)

can be constructed as follows:

u

www
v

a1

a2

b1

e1

e2 e3

e4

b2

}

���
~

= 1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


On classical inputs, this gate applies the NOT-gate on the second bit if and only if the
first bit is at 1. Therefore, if we apply the state |10〉 to it, we get 1√

2
|11〉.

We demonstrate how the token machine can be used to get this result. Following Proposi-
tion 5.3.23, we start by initializing the Token Machine in the token state (a1 ↓ 1)(a2 ↓ 0),
matching the input state |10〉.

We underline each step that is being rewritten, and take the liberty to sometimes do
several rewrites in parallel at the same time.

(a1 ↓ 1)(a2 ↓ 0) d (b1 ↓ 1)(e1 ↓ 1)(a2 ↓ 0) d (b1 ↓ 1)(e1 ↓ 1) 1√
2

(
(e3 ↓ 0) + (e3 ↓ 1)

)
 d

1√
2
(b1 ↓ 1)(e1 ↓ 1)

(
(e2 ↑ 0)(e4 ↓ 0) + (e2 ↑ 1)(e4 ↓ 1)

)
 d

1
2(b1 ↓ 1)

(
(e2 ↓ 0)− (e2 ↓ 1)

)(
(e2 ↑ 0)(e4 ↓ 0) + (e2 ↑ 1)(e4 ↓ 1)

)
 2
c

1
2(b1 ↓ 1)

(
(e4 ↓ 0) +

(
(e2 ↓ 0)− (e2 ↓ 1)

)
(e2 ↑ 1)(e4 ↓ 1)

)
 2
c

1
2(b1 ↓ 1)

(
(e4 ↓ 0)− (e4 ↓ 1)

)
 d

1
2
√

2
(b1 ↓ 1)

(
(b2 ↓ 0) + (b2 ↓ 1)− (b2 ↓ 0) + (b2 ↓ 1)

)
= 1√

2
(b1 ↓ 1)(b2 ↓ 1)

The final token state corresponds to 1√
2
|11〉, as described by Proposition 5.3.23. Notice

that during the run, all invariants presented before holds and that due to confluence we
could have rewritten the tokens in any order and still obtain the same result.

Proposition 5.3.23 is a direct generalization of Proposition 5.3.21. It shows we can
compute the output of a diagram provided a particular input state. We can also recover
the semantics of the whole operator by initializing the starting token state in a particular
configuration.

Theorem 5.3.25 (Arbitrary Wire Initialisation). Let D be a connected ZX-diagram,
with I(D) = [ai]1≤i≤n, O(D) = [bi]1≤i≤m, and e ∈ E(D) 6= ∅ such that (e ↓ x)(e ↑ x) ∗

tx for x ∈ {0, 1} with tx terminal (the rewriting terminates by Corollary 5.3.20). Then:

JDK =

2m+n∑
q=1

λq |y1,q . . . ym,q〉〈x1,q . . . xn,q| =⇒ t0 + t1 =

2m+n∑
q=1

λq

∏
i

(bi ↓yi,q)
∏
i

(ai ↑xi,q)
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Proof. First, let us single out e in the diagram D =
D2

e

D1

...ai

...
bi

... . We can build a second

diagram by cutting e in half and seeing each piece of wire as an input and an output:

D2

e0

D1

...ai

...
bi

...

e1

:=

e0

D′
...ai

...
bi

e1

. We can easily see that a rewriting of the token states (e ↓ 0)(e ↑ 0)

and (e ↓ 1)(e ↑ 1) in D corresponds step by step to a rewriting of the token states
(e0 ↓ 0)(e1 ↑ 0) and (e0 ↓ 1)(e1 ↑ 1) in D′. We can then focus on D′, whose interpretation
is taken to be

q
D′

y
=

2m+n+2∑
q=1

λ
′
q

∣∣y′1,q, ..., y′m+1,q

〉〈
x′1,q, ..., x

′
n+1,q

∣∣
such that

(id⊗m ⊗ 〈0|) ◦
q
D′

y
◦ (id⊗n ⊗ |0〉) + (id⊗m ⊗ 〈1|) ◦

q
D′

y
◦ (id⊗n ⊗ |1〉) = JDK

from which we get:

JDK =

2m+n+2∑
q=1

λ
′
qδ0,y′m+1,q

δ0,x′n+1,q

∣∣y′1,q, ..., y′m,q〉〈x′1,q, ..., x′n,q∣∣
+

2m+n+2∑
q=1

λ
′
qδ1,y′m+1,q

δ1,x′n+1,q

∣∣y′1,q, ..., y′m,q〉〈x′1,q, ..., x′n,q∣∣
We now have to consider two cases:

• D′ is still connected: By Proposition 5.3.21, for x ∈ {0, 1}:

(e0 ↓ x)(e1 ↑ x) ∗
2m+n+2∑
q=1

λ
′
qδx,x′n+1,q

∏
i

(ai ↑ x′i,q)
∏
i

(bi ↓ y′i,q)(e1 ↓ y′m+1,q)(e1 ↑ x)

 
2m+n+2∑
q=1

λ
′
qδx,y′m+1,q

δx,x′n+1,q

∏
i

(ai ↑ x′i,q)
∏
i

(bi ↓ y′i,q)

We hence have

(e0 ↓ 0)(e1 ↑ 0) ∗ t0 =
2m+n+2∑
q=1

λ
′
qδ0,y′m+1,q

δ0,x′n+1,q

∏
i

(ai ↑ x′i,q)
∏
i

(bi ↓ y′i,q)
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(e0 ↓ 1)(e1 ↑ 1) ∗ t1 =
2m+n+2∑
q=1

λ
′
qδ1,y′m+1,q

δ1,x′n+1,q

∏
i

(ai ↑ x′i,q)
∏
i

(bi ↓ y′i,q)

so t0 + t1 corresponds to the interpretation of D.

• D′ is now disconnected: Since D was connected, the two connected components
of D were connected through e. Hence, D′ only has two connected components,
one connected to e0 and the other to e1. By applying Proposition 5.3.21 to both
connected components, we get the desired result.

Example 5.3.26. Consider again the diagram from Example 5.3.24 and initialize any
wire e of the diagram in the state (e ↓ 0)(e ↑ 0)+(e ↓ 1)(e ↑ 1) and apply the rewriting as

in Theorem 5.3.25 we end up with the final token state 1√
2

(
(a1 ↑ 0)(a2 ↑ 0)(b1 ↓ 0)(b2 ↓

0) + (a1 ↑ 0)(a2 ↑ 1)(b1 ↓ 0)(b2 ↓ 1) + (a1 ↑ 1)(a2 ↑ 0)(b1 ↓ 1)(b2 ↓ 1) + (a1 ↑ 1)(a2 ↑

1)(b1 ↓ 1)(b2 ↓ 0)

)
which corresponds to the matrix 1√

2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, that is the one

obtained from the standard interpretation.

Notice that while technically there is a collision happening on the initial token state given
by Theorem 5.3.25, we do not apply it, intuitively this is saying that while the tokens
are on the same wire they have already crossed each others, so they cannot collide.

5.3.4. Discussions

At this point, it is legitimate to wonder about the benefits of the token machine over the
standard interpretation for computing the semantics of a diagram. Let us first notice
that when computing the semantics of a diagram à la Theorem 5.3.25, we get in the
token state one term per non-null entry in the associated matrix (the one obtained by
the standard interpretation).

We can already see that the token-based interpretation can be interesting if the matrix
is sparse, the textbook case being Znn whose standard interpretation requires a 2n × 2n

matrix, while the token-based interpretation only requires two terms (each with 2n
tokens).

Secondly, we can notice that we can ”mimic” the standard interpretation with the token
machine. Consider a diagram decomposed as a product of slices (tensor product of
generators) for the standard interpretation. Then, for the token machine, without going
into technical details, we can follow the strategy that consists in moving tokens through
the diagram one slice at a time. This essentially computes the matrix associated with
each slice and its composition.
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The point of the token machine, however, is that it is versatile enough to allow for more
original strategies, some of which may have a worst complexity, but also some of which
may have a better one.

5.4. Extension to Mixed Processes

The token machine presented in Section 5.3 works for so-called pure quantum processes
i.e. with no interaction with the environment. To demonstrate how generic our approach
is, we show how to adapt it to the natural extension of mixed processes, presented
in Section 2.1.4. In particular, this allows us to represent quantum measurements.

With respect to what happens to edge labels, notice that every edge in D can be mapped
to 2 edges in CPM(D). We propose that label e induces label e in the first copy, and e
in the second, e.g., for the identity diagram: e0 7−→ e0 e0

5.4.1. Token Machine for Mixed Processes

We now aim at adapting the token machine to ZX , the formalism for completely
positive maps. To do so we give an additional state to each token to mimic the evolution
of two tokens on CPM(D).

Definition 5.4.1. Let D be a ZX-diagram. A -token is a quadruplet (p, d, x, y) ∈
E(D) × {↓, ↑} × {0, 1} × {0, 1}. We denote the set of -tokens on D by tk (D). A -
token-state is then a multivariate polynomial over C, evaluated in tk (D). We denote
the set of -token-states on D by tkS (D)

In other words, the difference with the previous machine is that tokens here have an
additional state (e.g. y in (e ↓ x, y)). The rewrite rules are given in Table 5.3.

It is possible to link this formalism back to the pure token-states, using the existing
CPM construction for ZX-diagrams.
We extend this map by CPM : tkS (D)→ tkS(CPM(D)), defined as:

2m+n∑
q=1

λq

∏
j

(pj , dj , xj,q, yj,q) 7→
2m+n∑
q=1

λq

∏
j

(pj , dj , xj,q)(pj , dj , yj,q)

Since CPM(D) can be seen as two copies of D where is replaced by , each token
in D corresponds to two tokens in CPM(D), at the same spot but in the two copies of
D. The two states x and y represent the states of the two corresponding tokens.

We can then show that this rewriting system is consistent:
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e0 (e0 ↓ x, y)(e0 ↑ x′, y′) c δx,x′δy,y′ (Collision)

e0 e1 (eb ↓ x, y) d (e¬b ↑ x, y) ( -diffusion)

e0 e1 (eb ↑ x, y) d (e¬b ↓ x, y) ( -diffusion)

(ek ↓ x, y) d e
iα(x−y)

∏
j 6=k

(ej ↑ x, y)
∏
j

(e′j ↓ x, y)

(e′k ↑ x, y) d e
iα(x−y)

∏
j

(ej ↑ x, y)
∏
j 6=k

(e′j ↓ x, y)

(e0 ↓ x, y) d
1

2

∑
z,z′∈{0,1}

(−1)xz+yz
′
(e1 ↓ z, z′)

(e1 ↑ x, y) d
1

2

∑
z,z′∈{0,1}

(−1)xz+yz
′
(e0 ↑ z, z′)

e0
(e0 ↓ x, y) d δx,y (Trace-Out)

...
e1 en

e′1 e′m

...
α

e0

e1

( -Diffusion)

(
...

... -Diffusion)

Table 5.3.: The rewrite rules for  , where δ is the Kronecker delta.

Theorem 5.4.2. Let D be a ZX -diagram, and t1, t2 ∈ tkS (D). Then whenever
t1  t2 we have CPM(t1) {1,2} CPM(t2).

Proof. The proof is done by induction on  :

• Collision: t = (e0 ↓ x, y)(e0 ↑ x′, y′) δx,x′δy,y′ .
We get CPM(t) = (e0 ↓ x)(e0 ↓ y)(e0 ↑ x′)(e0 ↑ y′) δx,x′δy,y′

• Cup (Cap being similar): t = (eb ↓ x, y) (e¬b ↑ x, y).
We get CPM(t) = (eb ↓ x)(eb ↓ y) (e¬b ↑ x)(e¬b ↑ y).

• Znm(α): t = (ek ↓ x, y) eiα(x−y)
∏
j 6=k(ej ↑ x, y)

∏
j(e
′
j ↓ x, y) = t′

then we get

CPM(t) = (ek ↓ x)(ek ↓ y)

 2 eiαx
∏
j 6=k

(ej ↑ x)
∏
j

(e′j ↓ x)ei(−α)y
∏
j 6=k

(ej ↑ y)
∏
j

(e′j ↓ y)

= CPM(t′)

• Hadamard: t = (e0 ↓ x, y) 1
2

∑
z,z′∈{0,1}(−1)xz+yz

′
(e1 ↓ z, z′) = t′, then

CPM(t) = (e0 ↓ x)(e0 ↓ y)
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 2
d [(−1)x

1√
2

(e1 ↓ x) +
1√
2

(e1 ↓ ¬x)][(−1)y
1√
2

(e1 ↓ y) +
1√
2

(e1 ↓ ¬y)]

=
1

2
((−1)x+y(e1 ↓ x)(e1 ↓ y) + (−1)x(e1 ↓ x)(e1 ↓ ¬y)

+ (−1)y(e1 ↓ ¬x)(e1 ↓ y) + (e1 ↓ ¬x)(e1 ↓ ¬y))

= CPM(t′)

• Ground: t = (e0 ↓ x, y)  δx,y then CPM(t) = (e0 ↓ x)(e0 ↓ y). Remember
than in CPM(D) the Ground is translated as a Cup we get one diffusion and one
collision rule: CPM(t) (e0 ↑ x)(e0 ↓ y) δx,y.

The notions of polarity, well-formedness and cycle-balancedness can be adapted, and we
get strong normalization (Theorem 5.3.16), confluence (Corollary 5.3.19), and uniqueness
of normal forms (Corollary 5.3.20) for well-formed and cycle-balanced token states.

5.5. Variations of the Token Machine

5.5.1. Pulse Rewriting

So far, the Token Machines that we presented required us to specify an initial state in
order to compute the semantics of a ZX-Diagram. It is nonetheless possible to consider
another version of the rewriting rules, called the pulse-semantics in which a node of
the diagram will pulse and emit tokens in all of its input and output edges, directly
reflecting its matrix semantics as in Theorem 5.3.25. In order to properly compute the
semantics of the whole diagram, each node needs to pulse exactly once, in any order,
and then one can simply apply the collisions. As each generator is forced to pulse, there
is no need for the diagram to be connected. We may however have fringe cases, with
connected components in the diagram that have no generators that pulse. To remedy

this, it suffices to recall that the identity is nothing but = , and make this last

generator pulse in these cases. Notice that it is technically important to break the wire’s
name e from the left-hand-side in two e1e2 on each side of the green node, so that the
tokens obtained from the pulse are not removed by a collision. The rules for the Pulse
Token Machine are given in Table 5.4.

The pulse token machine is pretty straightforward: following the idea from Theorem 5.3.25
one can notice that the token state obtained by the pulse of a generator is exactly the
same as the standard interpretation of said generator.

The main results are obtained trivially: the pulse rewriting strategy enjoys termination
(as each generator pulses only once), confluence (as pulse and collisions do not interact),
that we reach the expected normal form with no token inside the diagram and only one
token going up (resp. down) on any input (resp. output) wire (after each pulse each
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e0 (e0 ↓ x)(e0 ↑ x′) c δx,x′ (Collision)

e0 e1  p (e0 ↑ 0)(e1 ↑ 0) + (e0 ↑ 1)(e1 ↑ 1) ( -diffusion)

e0 e1  p (e0 ↓ 0)(e1 ↓ 0) + (e0 ↓ 1)(e1 ↓ 1) ( -diffusion)

...
e1 en

e′1 e′m

...
α  p

∏
j

(ej ↑ 0)
∏
j

(e′j ↓ 0) + eiα
∏
j

(ej ↑ 1)
∏
j

(e′j ↓ 1)

(x− y)

e0

e1

 p (e0 ↑ 0)
1√
2

((e1 ↓ 0) + (e1 ↓ 1))

+ (e0 ↑ 1)
1√
2

((e1 ↓ 0)− (e1 ↓ 1))
( -Diffusion)

(
...

... -Diffusion)

Table 5.4.: The Pulse Rewriting System

input (resp. output) wire has exactly one token going up (resp. down), for the internal
ones, the collisions will necessarily happen).

It is actually even possible to recover the previous token machine through the pulse one
by pulsing a generator while having a token going through it and applying the collisions,
as exemplify in the following example:

Example 5.5.1. Considering

...
e1 en

e′1 e′m

...
α with the token state (ek ↓ 0) for k ∈ {1, . . . , n},

after pulsing we get:

(ek ↓ 0)(
∏
j

(ej ↑ 0)
∏
j

(e′j ↓ 0) + eiα
∏
j

(ej ↑ 1)
∏
j

(ej ↓ 1)) c

∏
j 6=k

(ej ↑ 0)
∏
j

(e′j ↓ 0)

which is equal to applying the diffusion rule of the initial token machine.

While not necessarily very useful for the case of the ZX-Calculus, the Pulse Rewriting
Strategy can allow us to more easily define both an asynchronous token machine and a
denotational semantics, as was originally done in the work presented in Chapter 6.

5.5.2. Synchronicity

Our token machine can be made synchronous: all tokens in a token state then move at
once. This implies adapting the rules to take into account all incoming tokens for each
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generator. For instance, in the
[ ...

... -Diffusion
]
-rule the product

∏
i(ei ↓ xi) rewrites into

δx1,...,xne
iαx1

∏
i(e
′
i ↓ xi). This notion of synchronicity is to be contrasted with [Dal17]

where tokens have to wait for all other incoming tokens to reach the gate before going
through it.

5.6. Sum Over Path Semantics

A serious drawback of the previous token machines is that the token state grows expo-
nentially quickly in the number of nodes in the diagram. A more compact representation
(linear in the size of the diagram as we will see in Prop. 5.6.7) can be obtained by adapt-
ing the concept of sums-over-paths (SOP) [Amy18] to our machine. This can be obtained
naturally, as strong links between ZX-Calculus and SOP morphisms were already shown
to exist [LWK20; Vil20]. Intuitively, SOP will allow us to manipulate token states in
a symbolic way, where for instance (e ↓ 0) + (e ↓ 1) will be represented by (e ↓ y).
While the development of the sums-over-paths token machine was mostly done by Re-
naud Vilmart, we put it here for comprehensiveness, with added proof of Theorem 5.4.2
and Theorem 5.6.9 that were missing in the original paper.

5.6.1. SOP Token Machine for Pure Operators

Definition 5.6.1. Let D be a ZX-diagram. A SOP-token is a triplet (p, d,B) belonging
to E(D)× {↓, ↑} × F2[~y] where ~y := (yi)0≤i<n are n variables from a set of variables V;
and where F2 := Z/2Z. We denote the set of SOP-tokens on D with variables ~y by
tkSOP(D)[~y]. A SOP-token-state is a quadruplet:

(s, ~y, P, {tj}0≤j<p) ∈ R× Vn × R[~y]/(1, {y2
i − yi}0≤i<n)× tkSOP(D)[~y]p

where R[~y]/(1, {y2
i − yi}0≤i<n) is the set of real-valued multivariate polynomials (whose

variables are ~y), modulo 1 and modulo (y2
i − yi) for all variables yi.

For any valuation of ~y, 2πP (~y) represents an angle, hence P is taken modulo 1. Since
each yi is a boolean variable, we can consider y2

i − yi = 0. To better reflect what this
quadruplet represents, we usually write it as:

s
∑
~y

e2iπP (~y)(p0, d0, B0(~y))...(pm−1, dm−1, Bm−1(~y))

We denote the set of SOP-token-states on D by tkSSOP(D).

Example 5.6.2. Let D =

e0

e1

, then 1√
2

∑
y0,y1

e2iπ
y0y1

2 (e0 ↑ y0)(e1 ↓ y1) ∈ tkSSOP(D).
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e0 (e0 ↓ B)(e0 ↑ B′) c
1

2

∑
z

e2iπ z
2

(B̂⊕B′) (Collision)

e0 e1 (eb ↓ B) d (e¬b ↑ B) ( -diffusion)

e0 e1 (eb ↑ B) d (e¬b ↓ B) ( -diffusion)

(ek ↓ B) d e
2iπ( α

2π
B̂)
∏
j 6=k

(ej ↑ B)
∏
j

(e′j ↓ B)

(e′k ↑ B) d e
2iπ( α

2π
B̂)
∏
j

(ej ↑ B)
∏
j 6=k

(e′j ↓ B)

(e0 ↓ B) d
1√
2

∑
z

e2iπ( z
2
B̂)(e1 ↓ z)

(e1 ↑ B) d
1√
2

∑
z

e2iπ( z
2
B̂)(e0 ↑ z)

...
e1 en

e′1 e′m

...
α

e0

e1

( -Diffusion)

(
...

... -Diffusion)

Table 5.5.: Rewrite rules for  sop.

We can link this formalism back to the previous one, by defining a map that associates
any SOP-token-state to a “usual” token-state. This map simply evaluates the term by
having all its variables span {0, 1}:

Definition 5.6.3. We define [.]tk : tkSSOP(D)→ tkS(D) by:s∑
~y

e2iπP (~y)
∏
j

(pj , dj , Bj(~y))

tk

:= s
∑

~y∈{0,1}n
e2iπP (~y)

∏
j

(pj , dj , Bj(~y))

Notice that therefore, the gain in size of the token state will be purely on a representation
point of view. Computing the actual matrices encoded by the token state will still require
an exponential growth in the number of tokens.

Example 5.6.4.[
1√
2

∑
y0,y1

e2iπ
y0y1

2 (e0 ↑ y0)(e1 ↓ y1)

]tk

=
1√
2

(
(e0 ↑ 0)(e1 ↓ 0) + (e0 ↑ 1)(e1 ↓ 0)

+(e0 ↑ 0)(e1 ↓ 1)− (e0 ↑ 1)(e1 ↓ 1)

)

Once again, the rule for a red node can be obtained from the previous rewrite rules and

the ZX-rule: α

...
:=α

...

...

...
. For reference, see Table 5.6.

We give the adapted set of rewrite rules for our SOP-token-machine in Table 5.5. In
the rewrite rules of our token machine, we have to map elements of F2[~y] to elements of
R[~y]/(1, {y2

i − yi}) for the Boolean polynomials to be sent to the phase polynomial. The
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α

a

(a ↓ x)→ 1√
2

∑
y

e2iπ(xy
2

+ α
2π
y)

α

a

b c

(a ↓ x)→ 1

2
√

2

∑
yi

e2iπ(
xy1
2

+ α
2π
y1+

y1y2
2

+
y1y3

2
)(b ↓ y2)(c ↓ y3)

Table 5.6.: Samples of asynchronous token-state evolution for red spiders with SOP To-
ken Machine

map (̂.) : F2[~y]→ R[~y]/1(1, {y2
i − yi}) that does this is defined as:

B̂ ⊕B′ = B̂ + B̂′ − 2B̂B′ B̂B′ = B̂B̂′ ŷi = yi 0̂ = 0 1̂ = 1

The provided rewrite rules do not give the full picture, for simplicity. If a rule gives
(e, d, b)  sop s′

∑
~y′ e

2iπP ′
∏
j(e
′
j , d
′
j , b
′
j), we have to apply it to a full SOP-token-state

as follows:

s
∑
~y

e2iπP (e, d, b)
∏
j

(ej , dj , bj) ss′
∑
~y,~y′

e2iπ(P+P ′)
∏
j

(e′j , d
′
j , b
′
j)
∏
j

(ej , dj , bj).

Just as before, the rewrite system is defined by first applying a diffusion rule then all
possible collision rules.

This set of rules mimics the previous one for SOP-token-states, except that it “synchro-
nizes” rewrites on all the terms at once (but not on all tokens).

Example 5.6.5. Let us compare the behaviour of the token machine from Section 5.3
to the SOP machine. We send a sum of tokens in states 0 and 1 down the wire a in the

diagram
a

b c
. In the former machine, this leads to

(a ↓ 0) + (a ↓ 1) (b ↓ 0)(c ↓ 0) + (a ↓ 1) (b ↓ 0)(c ↓ 0) + (b ↓ 1)(c ↓ 1)

while in the latter:
∑
y

(a ↓ y) sop

∑
y

(b ↓ y)(c ↓ y).

In both cases the result is the same when interpreted as usual token states. We notice
that the  sop token machine only takes one step compared to the standard one, which
leads to the following proposition:

Proposition 5.6.6. For any D ∈ ZX and s, s′ ∈ tkSSOP(D), whenever s  sop s
′ we

have [s]tk  ∗ [s′]tk.

Proof. By induction on  sop:
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• Collision: s = (e0 ↓ B)(e0 ↑ B′) sop
1
2

∑
t e

2iπ t
2

(B̂⊕B′) = s′

We get

[s]tk =
∑

−→y ∈{0,1}n,−→z ∈{0,1}m
(e0 ↓ B(−→y ))(e0 ↑ B′(−→z ))

 
∑

−→y ∈{0,1}n,−→z ∈{0,1}m
δB(−→y ),B′(−→z )

and

[s′]tk =
1

2

∑
−→y ∈{0,1}n,−→z ∈{0,1}m

∑
t

e2iπ t
2

( ̂B(−→y )⊕B′(−→z ))

=
1

2

∑
−→y ∈{0,1}n,−→z ∈{0,1}m,t∈{0,1}

δB(−→y ),B′(−→z )

=
1

2

∑
−→y ∈{0,1}n,−→z ∈{0,1}m

δB(−→y ),B′(−→z )

∑
t∈{0,1}

1

=
∑

−→y ∈{0,1}n,−→z ∈{0,1}m
δB(−→y ),B′(−→z )

• Cup (Cap being similar): s = (eb ↓ B)  sop (e¬b ↑ B) = s′ then we get [s]tk =∑
−→y ∈{0,1}n(eb ↓ B(−→y )) 

∑
−→y ∈{0,1}n(e¬b ↑ B(−→y )) = [s′]tk

• Znm(α) : s = (ek ↓ B) sop e
2iπ( α

2π
B̂)∏

j 6=k(ej ↑ B)
∏
j(e
′
j ↓ B) = s′

We get

[s]tk =
∑

−→y ∈{0,1}n
(ek ↓ B(−→y ))

 
∑

−→y ∈{0,1}n
eiαB(−→y )

∏
j 6=k

(ej ↑ B(−→y ))
∏
j

(e′j ↓ B(−→y ))

=
∑

−→y ∈{0,1}n
e2iπ( α

2π
B̂(−→y ))

∏
j 6=k

(ej ↑ B(−→y ))
∏
j

(e′j ↓ B(−→y )) = [s′]tk

• Hadamard: s = (e0 ↓ B) sop
1√
2

∑
z e

2iπ( z
2
B̂)(e1 ↓ z) = s′

We have

[s]tk =
∑

−→y ∈{0,1}n
(e0 ↓ B(−→y ))
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1√
2

∑
−→y ∈{0,1}n

(−1)B(−→y )(e1 ↓ B(−→y )) + (e1 ↓ ¬B(−→y ))

Take [s′]tk and sum z over {B(−→y ),¬B(−→y )} and remember that B2 = B.

then:

1√
2

∑
−→y ∈{0,1}n

e2iπ(
B̂(−→y )

2
B̂(−→y ))(e1 ↓ B(−→y )) + e2iπ(

¬B̂(−→y )
2

B̂(−→y ))(e1 ↓ ¬B(−→y ))

=
1√
2

∑
−→y ∈{0,1}n

e2iπ(
B̂(−→y )

2
)(e1 ↓ B(−→y )) + (e1 ↓ ¬B(−→y ))

=
1√
2

∑
−→y ∈{0,1}n

(−1)B̂(−→y )(e1 ↓ B(−→y )) + (e1 ↓ ¬B(−→y )) = [s′]tk

We can show a result on the growth size of the token-state as it rewrites, which was the
motivation for the use of this formalism.

Proposition 5.6.7. Let D ∈ ZX and s, s′ ∈ tkSSOP(D) such that all Boolean poly-
nomials Bj in s are reduced to a single term of degree ≤ 1, and such that s  sop s′.
Then, the size of s′ is bounded by: S(s′) ≤ S(s) + ∆(D) where S denotes the cumulative
number of terms in the phase polynomial and the number of tokens in the token-state,
and where ∆(D) represents the maximum arity of generators in D.

Proof. Let D ∈ ZX and s ∈ tkSSOP(D) such that its Bj ∈ {0, 1, y}y∈V for all j. Note
that, at worse, all collisions do not change the size of the term (at best reduce the
size). Indeed, we turn two tokens into at most two terms in the phase polynomial, since
z
2( ̂Bj1 ⊕Bj2) = z

2(Bj1 + Bj2 − 2Bj1Bj2) = z
2(Bj1 + Bj2) because we work modulo 1 in

the phase polynomial.

Hence, since a rewrite step consists in a diffusion step followed by some collision rule,
showing the result only for diffusions is enough.

• Diffusions through Cups and Caps do not change the size.

• A diffusion through H adds a single term in the phase polynomial. However, since
H is in the diagram, ∆(D) ≥ 2, so the proposition holds.

• A diffusion through a Green-spider with arity δ adds δ − 2 tokens, and a single
term in the phase polynomial. However, δ ≤ ∆(D).
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The requirement on Boolean polynomials may seem overly restrictive. However, it is
invariant under rewriting: starting with a token-state in this form ensures polynomial
growth.

Polarity can be defined in this setting (and is even more natural, as we do not need
to consider each term individually) providing the notions of well-formedness and cycle-
balancedness. The main results from Section 5.3 are valid in this setting. We recover
strong normalization for well-formed, cycle-balanced token-states (Theorem 5.3.16), Lo-
cal Confluence (Proposition 5.3.18) and their corollaries, such as uniqueness of normal
forms (Corollary 5.3.20).

Non-empty terminal token states can also be interpreted as SOP-morphisms. Suppose
an SOP-token state

S = s
∑
~y′

e2iπP
∏
i

(bi ↓ Bi(~y′))
∏
i

(ai ↑ Ai(~y′))

on a diagram D with I(D) = [ai]1≤i≤n and O(D) = [bi]1≤i≤m.

Then [S]SOP := s
∑

~y e
2iπP (~y) |B0(~y), ...〉〈A0(~y), ...| is the SOP morphism associated to

S. We have the following commutative diagram:

tkSSOP ↓ tkS ↓

SOP Qubit

[.]tk

[.]SOP J.K
J.K

Where tkSSOP ↓ (resp. tkS ↓) is the set of non-empty well-formed terminal SOP-token

states (resp. token states), and tkS ↓ J.K→ Qubit is the interpretation obtained from
Theorem 5.3.25.

5.6.2. SOP Token Machine for Mixed Processes

We now aim at adapting the SOP token machine to ZX , the formalism for completely
positive maps.

Definition 5.6.8. Let D be a ZX-diagram. A SOP -token is a quadruplet (p, d,B,B′) ∈
E(D) × {↓, ↑} × F2[~y] × F2[~y] where ~y := (yi)0≤i<n are variables from a set of variables
V. We denote the set of SOP -tokens on D with variables ~y by tkSOP(D)[~y]. Similar
to what was done in Definition 5.6.1, a SOP -token-state is a quadruplet

(s, ~y, P, {tj}0≤j<p) ∈ R× Vn × R[~y]/(1, {y2
i − yi}0≤i<n)× tkSOP(D)[~y]p

To better reflect what this quadruplet represents, we usually write it as:

s
∑
~y

e2iπP (~y)(p0, d0, B0(~y), B′0(~y))...(pm−1, dm−1, Bm−1(~y), B′m−1(~y))

We denote the set of SOP -token-states on D by tkSSOP(D).
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In other words, the difference with the previous machine is that tokens here have an
additional Boolean function (e.g. y in (a ↓ x, y)). The rewrite rules can be found
in Table 5.7.

e0
(e0 ↓ B0, B1)

×
(e0 ↑ B′0, B′1)

 c
1

4

∑
z0,z1

e2iπ(
z0
2
B̂0⊕B1+

z1
2
B̂′0⊕B′1) (Collision)

e0 e1 (eb ↓ B,B′) d (e¬b ↑ B,B′) ( -diffusion)

e0 e1 (eb ↑ B,B′) d (e¬b ↓ B,B′) ( -diffusion)

(ek ↓ B0, B1) d e
2iπ α

2π
(B̂0−B̂1)

∏
j 6=k(ej ↑ B0, B1)
×∏
j(e
′
j ↓ B0, B1)

(e′k ↑ B0, B1) d e
2iπ α

2π
(B̂0−B̂1)

∏
j(ej ↑ B0, B1)
×∏
j 6=k(e

′
j ↓ B0, B1)

(e0 ↓ B,B′) d
1

2

∑
z,z′

e2iπ( z
2
B̂+ z′

2
B̂′)(e1 ↓ z, z′)

(e1 ↑ B,B′) d
1

2

∑
z,z′

e2iπ( z
2
B̂+ z′

2
B̂′)(e0 ↑ z, z′)

e0
(e0 ↓ B,B′) d

1

2

∑
z

e2iπ z
2

(B̂⊕B′) (Trace-Out)

...
e1 en

e′1 e′m

...
α

e0

e1

( -Diffusion)

(
...

... -Diffusion)

Table 5.7.: The rewrite rules for  .

It is possible to link this formalism back to the mixed processes-free SOP-token-states,
using the existing CPM construction for ZX-diagrams. We extend this map by CPM :
tkSSOP(D)→ tkSSOP(CPM(D)), defined as:

s
∑
~y

e2iπP (~y)
∏
j

(pj , dj , Bj(~y), B′j(~y)) 7→ s
∑
~y

e2iπP (~y)
∏
j

(pj , dj , Bj(~y))(pj , dj , B
′
j(~y)).

As described in Section 2.1, CPM(D) can be seen as two copies of D where is replaced
by a cup between the two copies. Each token in D corresponds to two tokens in CPM(D),
at the same spot but in the two copies of D. The two Boolean polynomials B and B′

represent the Boolean polynomials of the two corresponding tokens.

We can then show that this rewriting system is consistent:

Theorem 5.6.9. Let D be a ZX -diagram, and t1, t2 ∈ tkSSOP(D). Then whenever

t1  t2 we have CPM(t1) {1,2}sop CPM(t2).
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Proof. Similar to proof of Theorem 5.4.2, done by induction on  

• Collision: t1 = (e0 ↓ B0, B1)(e0 ↑ B′0, B′1) 1
4

∑
z0,z1

e2iπ(
z0
2
B̂0⊕B1+

z1
2
B̂′0⊕B′1) = t2

Then CPM(t1) = (e0 ↓ B0)(e0 ↑ B′0)(e0 ↓ B1)(e0 ↑ B′1)

 2
sop (1

2

∑
z0
e2iπ

z0
2

(B̂0⊕B′0))(1
2

∑
z1
e2iπ

z1
2

(B̂1⊕B′1)) = CPM(t2)

• Cup (Cap being similar): t1 = (eb ↓ B,B′) (e¬b ↑ B,B′) = t2 with
CPM(t1) = (e0 ↓ B)(e0 ↓ B′) 2 = (e¬b ↑ B)(e¬b ↑ B′) CPM(t2)

• Znm(α): t1 = (ek ↓ B0, B1)  e2iπ α
2π

(B̂0−B̂1)∏
j 6=k(ej ↑ B0, B1)

∏
j(e
′
j ↓ B0, B1) =

t2

We get CPM(t1) = (ek ↓ B0)(ek ↓ B1)

 2
sop (e2iπ( α

2π
B̂0)∏

j 6=k(ej ↑ B0)
∏
j(e
′
j ↓ B0))(e2iπ(−α

2π
B̂1)∏

j 6=k(ej ↑ B0)
∏
j(e
′
j ↓

B1))

= (e2iπ( α
2π
B̂0) × e2iπ(−α

2π
B̂1))(

∏
j 6=k(ej ↑ B0)

∏
j(e
′
j ↓ B0)

∏
j 6=k(ej ↑ B0)

∏
j(e
′
j ↓

B1)) = CPM(t2)

• Hadamard: t1 = (e0 ↓ B,B′) 1
2

∑
z,z′ e

2iπ( z
2
B̂+ z′

2
B̂′)(e1 ↓ z, z′) = t2

with CPM(t1) = (e0 ↓ B)(e0 ↓ B′)
 2

sop ( 1√
2

∑
z e

2iπ( z
2
B̂)(e1 ↓ z))( 1√

2

∑
z′ e

2iπ( z
′
2
B̂′)(e1 ↓ z′)) = CPM(t2)

• Ground: t1 = (e0 ↓ B,B′) 1
2

∑
z e

2iπ z
2

(B̂⊕B′) = t2

Do not forget that the ground is translated as a cup, so we end up with two wires
e0 and e0 on both side of the cup, so:

CPM(t1) = (e0 ↓ B)(e0 ↓ B′) then we just need to pass one of the two token on
the other side of the cup and apply a collision:

CPM(t1) sop (e0 ↑ B)(e0 ↓ B′) sop
1
2

∑
z e

2iπ z
2

(B̂⊕B′) = CPM(t2).

In fact, the rewriting rule will only be simulated by 2 rewriting rules ( sop), except
in the case of the Trace-out where ( sop) only needs to apply one rule.

Again, the notions of polarity, well-formedness and cycle-balancedness can be adapted,
and again, we get strong (Theorem 5.3.16), confluence (Corollary 5.3.19), and uniqueness
of normal forms (Corollary 5.3.20) for well-formed and cycle-balanced token states.

126



Chapter 5. Geometry of Interaction for ZX Calculus

5.7. Conclusion and Future Work

In this chapter presented a novel particle-style semantics for ZX-Calculus. Based on a
token-machine automaton, it emphasizes the asynchronicity and non-orientation of the
computational content of a ZX-diagram. Compared to existing token-based semantics of
quantum computation such as [Dal17], our proposal furthermore supports decentralized
tokens where the position of a token can be in superposition.

The Token Machine has been adapted to the case of mixed-processes, and we give another
version using the sum-over-paths semantics which allows the number of tokens to stays
bounded in size.

As quantum circuits can be mapped to ZX-diagrams, our token machines induce a notion
of asynchronicity for quantum circuits. This contrasts with the notion of token machine
defined in [Dal17] where some form of synchronicity is enforced: in their works each
token represents a qubit and therefore multiple tokens need to be synchronized in order
to properly handle entanglement, while our tokens do not represent qubits, but they
collect the operation that will be applied to the input qubits.

Our token machine gives us a new way to look at how a ZX-diagram computes with a
more local, operational approach, and in fact could be applied to any tensor network.

This work is a first step towards adding more expressive logical and computational
constructions in the ZX-Calculus to get closer to the theory of proof nets, such as
considering biproducts (that we define in the next chapter) or even recursion (that we
leave as future works.)
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Chapter 6.

Many Worlds Calculus

Abstract

In this chapter, we explore the interaction between two monoidal structures: a
multiplicative one, for the encoding of pairing, and an additive one, for the encoding
of choice. We propose a PROP to model computation in this framework, where the
choice is parametrized by an algebraic side effect: the model can support regular
tests, probabilistic and non-deterministic branching, as well as quantum branching,
i.e., superposition.

The graphical language comes equipped with a (i) a token-based semantics (ii) a
worlds labelling system, giving us information and how and where some equation
can take place and (iii) an equational theory based on the worlds labelling. We also
show how a quantum version of the language of isos from Chapter 4 can be encoded
into the Many-Worlds.

References: Results of this chapter is a draft under submission, in collaboration
with Marc de Visme, Benôıt Valiron and Renaud Vilmart.

6.1. Introduction

Two Canonical Monoidal Structures. The basic execution flow of a computation
is arguably based on three notions: sequences, tuples and branches. Sequences form
the building block of compositionality, tuples are what makes it possible to consider
multiple pieces of information together, while branches allow the behaviour to change
depending on the inputs or on the state of the system. In a graphical language, described
by a: PROP (C,>,�), the monoidal structure formalizes how the bunching of wires
behaves. This monoidal structure is very versatile. On one hand, it can be considered
in a multiplicative way, with A � B seen as the pairing of an element of type A and
an element of type B. This approach is one followed in the design of MLL proof-
nets for instance [Dal17], or in the ZX-Calculus. On the other hand, one can consider
the monoidal structure in an additive way, with � for instance being a co- or a bi-
product. Standard examples are the category FinRel of finite sets and relations, forming
an additive PROP with � being the disjoint union, or the category of finite dimensional
vector spaces (or semi-modules) and linear maps, with � being the cartesian product.
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f

g

A⊕B A′ ⊕B′
A

B B′

A′

⊕ ⊕

(a) Split over coproduct

(A⊗B)⊕ C (A′ ⊗B′)⊕ C ′

C C ′

⊕ ⊕

f

g

h

A

B

A′

B′⊗ ⊗

(b) Splits over coproduct and tensor

Figure 6.1.: Examples of branchings

Graphical languages based on linear optics such as the PBS-Calculus [CP20] make uses of
an additive structure. From a computational perspective, an additive monoidal structure
can be regarded as the possibility to choose a computational path upon the state of the
input. Depending on the underlying system, this choice can be regarded as deterministic
(if based on Set), non-deterministic (if based on Rel), probabilistic (if based on a suitable
semi-module), etc.

To be able to handle both pairing and branching in a PROP, we cannot uniquely identify
� as being multiplicative and additive. We instead need to extend the PROP with two
additional monoidal structures, one for pairing (⊗) and one for branching (⊕).

In this chapter, we focus on a framework where these two monoidal structures are avail-
able. Graphical languages for such a setting usually rely on a notion of sheet, or worlds,
to handle general branching [Dun09; Mel14]. Figure 6.1a shows for instance how to rep-
resent the construction of the morphism f ⊕ g : A⊕A′ → B⊕B′ out of f : A→ A′ and
g : B → B′. The symbol “⊕” stands for the “split” of worlds. Such a graphical language
therefore comes with two distinct “splits”: one for the monoidal structure —leaving in-
side one specific world—, and one for the coproduct —splitting worlds—. They can be
intertwined, as shown in Figure 6.1b. Another approach followed by [CDH20] external-
izes the two products (tensor product and coproduct) into the structure of the diagrams
themselves, at the price of a less intuitive tensor product and a form of synchronization
constraint.

However, in the state of the art this “splitting-world” understanding has only been
carried for deterministic or probabilistic branching [Dal17; Dun09; Sta15]. These existing
approaches do not support more exotic branching, such as quantum superposition.

Limitation of Current Approaches and Objective of the Chapter. Although
there is a finer and finer understanding of superposition of causal orders in the literature,
none of the existing PROPs can support both the quantum switch on complex data built
from tensors and coproducts. We claim in this chapter that the same intuition underly-
ing probabilistic branching can be followed for quantum (and more general) branching.
In the conventional case, 1 ⊕ 1 is a regular boolean: either “left” (standing e.g., for
True) or “right” (standing e.g., for False). In quantum computation, the sum-type 1⊕1
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A A

⊕ ⊕

V

UV
1⊕ 1 1⊕ 1

c c

AA

A

1

1
U

⊗ ⊗A⊗ (1⊕ 1) A⊗ (1⊕ 1)

Figure 6.2.: Quantum Switch with Worlds

can however be understood as a sum of vector spaces, giving an alternative interpreta-
tion to 1 ⊕ 1: it can be regarded as the type of a quantum bit, superposition of True
and False. One should note that this appealing standpoint should be taken cautiously:
(Pure) quantum information imposes strong constraints on the structure of the data in
superposition: orthogonality and unit-norm must be preserved [AG05; SVV18].

The Quantum Switch can then be naturally understood in this framework. Consider for
instance Figure 6.2, read from left to right: as input, a pair of an element of type A and
a quantum bit. Based on the value of the qubit (True or False), the wire A goes in the
upper or the lower sheet, and is fed with U then V or V then U . Then everything is
merged back together.

Organization of the chapter In this chapter, we introduce a new graphical language
for quantum computation, based on compact category with biproduct [HV19]. This
language allows us to express any process with both pairing and a general notion of
algebraic branching, encompassing deterministic, non-deterministic, probabilistic and
quantum branching. In Section 6.3 we develop first a token-based semantics as in Chap-
ter 5. The development of the token machine is split in two. First, in Section 6.3.2 we
introduce a pulse token machine, following the intuition from Section 5.5.1. We show
that the token machine is terminating and confluent. Then in Section 6.3.3 we develop
the asynchronous token machine as a special case of the pulse one. We show how to
simulate a run of the pulse token machine with the asynchronous one and show conflu-
ence and termination. From there, we develop the worlds labelling system in Section 6.4
and the equational theory in Section 6.6. We show as an example how to encode some
basic quantum primitives into the language and then show how to encode the Quan-
tum Switch into. We then compare our language with other known graphical languages
in Section 6.8. We finish this chapter showing how a quantum variant of the language
from Chapter 4 can be interpreted as diagrams of the language.

6.2. The Many-Worlds Calculus

Our calculus is parametrized by a commutative semiring (R,+, 0,×, 1). It can be instan-
tiated by the complex numbers (C,+, 0,×, 1) to represent pure quantum computations,
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the non-negative real numbers (R≥0,+, 0,×, 1) for probabilistic computations, or the
booleans ({⊥,>},∨,⊥,∧,>) for non-deterministic computations.

6.2.1. A First Graphical Language

The generators of our language are described in Figure 6.3 and are respectively the Iden-
tity, the Swap, the Cup, the Cap, the Plus, the Tensor, the Unit, the n-ary Contraction
for n ≥ 0, and the Scalar for s ranging over the commutative semiring R. Mirrored
versions of those generators are defined as syntactic sugar through the cup and cap, as
shown for the mirrored Plus on the right-hand-side of Figure 6.3. Diagrams are read top-
to-bottom: the top-most wires are the input wires, and the bottom-most wires are the
output wires. Each wire carry a type, defined by the syntax A,B ::= 1 | A⊕B | A⊗B.
As such, the Unit starts a wire of type 1, the Plus combines two wires of type A and B
into a wire of type A ⊕ B, and similarly the Tensor combines two wires of type A and
B into a wire of type A⊗B, as in linear logic proof nets.

Diagrams are obtained from generators by composing them in parallel (written �), or
sequentially (written ◦). Sequential composition requires the type (and number) of wires
to match. The notation for � is not common for the parallel composition, this is because
wires that are graphically in parallel are not necessarily “in tensor with one another”.
In fact, A�B can be understood semantically as “either A⊗B or A⊕B”.

D2 ◦D1 :=

...

...

...
D2

D1
D1�D2 :=

...

...
D1

...

...
D2

Intuitively, the Many-Worlds calculus can be seen as a flattened version of sheet or
tape-diagrams, for instance, the diagram from Figure 6.1a will be represented in the
Many-Worlds Calculus as:

f g

A⊕B
A B

A′ B′

A′⊕B′

While the diagram from Figure 6.1b would be similar, but with a tensor on the left
branch of the ⊕, splitting and merging the left wire. The plus and tensors will be
treated differently: intuitively, if a data enters a plus node, it will either go on the left,
or on the right, disabling the other branch, while for a tensor, the data will simply split
itself into the two different branches, without disabling any. If we replace the second plus
by a tensor, we would obtain a diagram that is not representable using sheet-diagrams
but that we can write in our language. But this diagram wouldn’t make much sense as
a plus is supposed to split data that cannot communicate while the tensor is a collection
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A

A

A B

B A

A A

A A

A B

A⊕B

A B

A⊗B 1

n· · ·
c

A

A A

s

A

A A B

A⊕B

:=
A

A⊕B

B

Figure 6.3.: Generators of our First Graphical Language (n ≥ 0, s ∈ R)

of data. In order to handle theses cases, we will introduce a worlds labelling system
in Section 6.4. We write f : ���n(Ai) →���m(Bj) for a diagram f with n input wires of
type A1, . . . , An and m output wires of type B1, . . . , Bm.

Remark 6.2.1. Instead of having the Cup and the Cap as generators and defining the
mirrored version of each generator through them, one could proceed the other way around
by defining the Cap as follows, and the Cup in a mirrored way:

:=

A B

A⊗B
:=

A B

A⊕B
1 :=

1 1

The Many-Worlds Calculus was developed as an extension of the works from Chapter 5
in which a biproduct was added to the ZX-Calculus. While it wasn’t clear how to give a
denotational semantics to such a language, the development of the token machine gave
us a more intuitive look at how the generators of the languages should behave, and from
there the denotational semantics and then the worlds labelling was developed. However,
in this thesis we only focus on the token machine, equational theory and encoding of the
programming language, as the categorical definitions and denotational semantics along
with its property was developed by Marc de Visme and Renaud Vilmart.

6.3. The Token Machine

The Token machine follows the principles of Chapter 5:

• We give a distinct name to each of its wires. By convention, we will use the names
e0, e1, e2, . . . for naming the wires of the diagram. We also consider the two sides
of a cup or cap as different wires.

• The notion of path, cycle, length of a path are the same.

In Section 6.3.1 we introduce the base formalism of tokens and token states. In Sec-
tion 6.3.2 we present a first token machine, based on a pulse rewriting strategy, akin to
the one discussed in Section 5.5.1. In Section 6.3.3 we introduce the asynchronous token
machine as a special case of the pulse one: a rewriting of the asynchronous machine will
correspond to a pulse of a generator where a token is entering from one of the input
or output wire. Finally, in Section 6.3.4 we discuss how some “incorrect” diagrams are
interpreted by the token machine in order to motivate the worlds system introduced
in Section 6.4.
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6.3.1. Tokens and Token States

Each type can be assigned a set of basis elements, by analogy with vector spaces and
with the set of closed values of type A from the language of Chapter 4.

Definition 6.3.1 (Basis Element). Basis elements are defined inductively as follows:

• ? is the unique basis element of type 1

For tA and tB basis elements of types A and B respectively:

• 〈tA, tB〉 is a basis element of type A⊗B

• injl tA and injr tB are basis elements of A⊕B

We can define an inner product of basis elements t and t′ of a type A simply by

〈
t t′

〉
=

{
1 if t = t′

0 if t 6= t′

By analogy with vector spaces, the set of basis elements (or the set of closed value
from Chapter 4) of a type A is an orthonormal basis.

In addition to its basis elements, each type is provided with a specific element called
annihilator, denoted by •. Intuitively, these states are here to indicate parts of the dia-
gram that are being ignored during evaluation, e.g., one of the two if-then-else branches
during the evaluation of a classical program. Although it may be quite mysterious for
now, we allow this element to be used in inner products, as follows:

〈
• •

〉
= 1 and〈

• t
〉

=
〈
t •
〉

= 0 for any basis element t.

Definition 6.3.2 (Token). A token on diagram D is a 3-tuple made of:

• A name of a wire of D, corresponding to the position of the token

• A direction in {↑, ↓}

• A state, being either: • or a basis element of the type of the wire it rests on

Tokens only define part of the evaluation of a diagram. To completely capture it, we
need to consider collections of tokens that interact with each other.

Definition 6.3.3 (Token State). A token state on a diagram D is a C-valued multi-
variate polynomial evaluated in tokens on D, e.g., it is a C-weighted sum of products of
tokens.
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6.3.2. Token Machine’s Pulse Rewrite Strategy

We start by developing a Pulse Rewrite Strategy for the Token Machine, in which we show
strong normalization and confluence. Then, following the intuition from Section 5.5.1,
we develop an asynchronous token machine for the Many-Worlds and show that both
strategies are equivalents and that results from the pulse rewriting strategy can be
transposed to the asynchronous one.

The idea is that each generator “pulses” – it generates all necessary token states to fully
capture its dynamics – then tokens that end up colliding interact, hence capturing the
interaction between neighbouring generators.

Again, the token state’s evolution rules are put in two categories. The first is the set of
collision rules, which thanks to the above definition of the inner product can be summed
up in one line:

e0 :: (e0 ↓ x)(e0 ↑ y)→c

〈
x y

〉
That is: tokens that collide on a wire perform the inner product of their respective
states, either reducing to 0, the absorbing element of products of tokens that represents
an error that cancel a product from the sum of product of the tokens state, or to 1, the
neutral element.
The other set of rules indicates how a generator “pulses”:

e1e0

e2

A B

A⊗ B

:: →p

∑
tA∈BA
tB∈BB

(e0 ↑ tA)(e1 ↑ tB)(e2 ↓ 〈tA, tB〉)

+(e0 ↑ •)(e1 ↑ •)(e2 ↓ •)

e1e0

e2

A B

A⊗ B

:: →p

∑
tA∈BA
tB∈BB

(e0 ↓ tA)(e1 ↓ tB)(e2 ↑ 〈tA, tB〉)

+(e0 ↑ •)(e1 ↓ •)(e2 ↑ •)

e1e0

e2

A B

A⊕ B

:: →p

∑
tA∈BA

(e0 ↑ tA)(e1 ↑ •)(e2 ↓ injl tA)

+
∑
tB∈BB

(e0 ↑ •)(e1 ↑ tB)(e2 ↓ injr tB)

+(e0 ↑ •)(e1 ↑ •)(e2 ↓ •)

e1e0

e2

A B

A⊕ B

:: →p

∑
tA∈BA

(e0 ↓ tA)(e1 ↓ •)(e2 ↑ injl tA)

+
∑
tB∈BB

(e0 ↓ •)(e1 ↓ tB)(e2 ↑ injr tB)

+(e0 ↓ •)(e1 ↓ •)(e2 ↑ •)
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c

ene1

e0

A A

A

...
:: →p

n∑
i=1

∑
tA∈BA

(e1 ↑ •)...(ei ↑ tA)...(en ↑ •)(e0 ↓ tA)

+(e1 ↑ •)...(en ↑ •)(e0 ↓ •)

c
ene1

e0

A A

A

...
:: →p

n∑
i=1

∑
tA∈BA

(e1 ↓ •)...(ei ↓ tA)...(en ↓ •)(e0 ↑ tA)

+(e1 ↓ •)...(en ↓ •)(e0 ↑ •)

s
e0

e1

A

A

:: →p
s ·

∑
tA∈BA

(e0 ↑ tA)(e1 ↓ tA) + (e0 ↑ •)(e1 ↓ •)

e0 e1

A A
:: →p

∑
tA∈BA

(e0 ↓ tA)(e1 ↓ tA) + (e0 ↓ •)(e1 ↓ •)

e0 e1

A A

:: →p

∑
tA∈BA

(e0 ↑ tA)(e1 ↑ tA) + (e0 ↑ •)(e1 ↑ •)

e0

1

:: →p (e0 ↓ ?) + (e0 ↓ •)

e0

1

:: →p (e0 ↑ ?) + (e0 ↑ •)

Remark 6.3.4. The upside-down versions of each of these generators is simply exchang-
ing ↑ and ↓.

Notice that we denote the collision rules by →c and the pulse rules by →p. We are now
ready to define the pulse strategy:

Definition 6.3.5 (Pulse on a generator). Given a diagram D with a generator g, we
write →p|{g} for the pulse rewriting that pulses the generator g.
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Definition 6.3.6 (Restricted Pulse). Given a set S = {g1, . . . , gn} of the generators of
a diagram D, we define the S-restricted pulse by making all generators of S pulse exactly
once: →all

p|S=→p|{g1} · · · →p|{gn}

Definition 6.3.7 (Maximum collisions). We denote by t →max
c s the reduction t →∗c s

such that s is collision free.

Definition 6.3.8 (All Pulsing). Given a diagram D with generators S We define →all
p

as →all
p|S, that is, all generators of the diagram pulse exactly once.

Definition 6.3.9 (Pulse Strategy). The pulse strategy is defined as being: →all
p ;→max

c ,
that is we make every generator pulse exactly once, then we apply collision rules as long
as we can.

Remark 6.3.10. Notice that there is an ambiguity here: as the first pulse may create
several terms, what we mean is that the next pulse rewrite must be applied on all of them,
and so on. Notice also that this amounts to multiplying together the terms obtained from
each individual pulse rewrite. We could technically allow more freedom on the order of
application of the pulses, but that would defeat the purpose of having a straightforward
canonical rewrite strategy, which is the aim here.

For example, if we have two generators g1, g2 and we first pulse the generator g1 and
obtain the token state t1 + t2, then the generator g2 pulse for both t1 and t2, obtaining
t′1 + t′2.

Remark 6.3.11. As each generator is forced to pulse, there is no need for the diagram
to be connected. We may however have fringe cases, with connected components in the
diagram that have no generators that pulse. To remedy this, via the equational theory

defined in Section 6.6 we get that the identity is nothing but = 1 , and make this last

generator pulse in these cases. Notice that it is technically important to break the wire’s
name in two, so that the tokens obtained from the pulse are not removed by a collision.

When looking at the rule of the Plus, we can notice that in each summation where a token
carrying some value of type A (resp. B) goes to the right (resp. left), an annihilator is
sent to the left (resp. right): this represents the fact that, if you imagine a token in the
state injl t (resp. injr t) entering the node through the bottom, it can only go on the
left branch (resp. right branch), and hence the annihilator is here to disable the other
branch. This is similar for the n-ary contraction, except that an annihilator is sent to
all the other branches.
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Example 6.3.12 (Not Diagram). Take the type of boolean B = 1⊕1, then we compute
the pulse semantic of the NOT-diagram:

e0

1⊕ 1

1⊕ 1

e1 e2

e3

:: →2
p

 (e0 ↑ injl ?)(e1 ↓ ?)(e2 ↓ •)
+(e0 ↑ injr ?)(e1 ↓ •)(e2 ↓ ?)

+(e0 ↑ •)(e1 ↓ •)(e2 ↓ •)

 ·
 (e2 ↑ ?)(e1 ↑ •)(e3 ↓ injl ?)

+(e2 ↑ •)(e1 ↑ ?)(e3 ↓ injr ?)
+(e2 ↑ •)(e1 ↑ •)(e3 ↓ •)


→∗c (e0 ↑ injl ?)(e3 ↓ injl ?)

〈
• ?

〉 〈
? •

〉
+ (e0 ↑ injl ?)(e3 ↓ injr ?)

〈
? ?

〉 〈
• •

〉
+ (e0 ↑ injl ?)(e3 ↓ •)

〈
• •

〉 〈
• ?

〉
+ (e0 ↑ injr ?)(e3 ↓ injl ?)

〈
• •

〉 〈
? ?

〉
+ (e0 ↑ injr ?)(e3 ↓ injr ?)

〈
? •

〉 〈
• ?

〉
+ (e0 ↑ injr ?)(e3 ↓ •)

〈
• ?

〉 〈
• •

〉
+ (e0 ↑ •)(e3 ↓ injl ?)

〈
? •

〉 〈
• •

〉
+ (e0 ↑ •)(e3 ↓ injr ?)

〈
• ?

〉 〈
• •

〉
+ (e0 ↑ •)(e3 ↓ •)

〈
• •

〉 〈
• •

〉
= (e0 ↑ injl ?)(e3 ↓ injr ?)

+ (e0 ↑ injr ?)(e3 ↓ injl ?)
+ (e0 ↑ •)(e3 ↓ •)

The three elements of the sum represent the three possible executions: The first element
of the sum, (e0 ↑ injl ?)(e3 ↓ injr ?) represents the fact that given input injl ?, the
token machine will output the token state injr ?, the second element of the sum does the
opposite : those two elements represent sending swapping the value of a boolean. The
third represents the choice of not executing the diagram at all.

In the Example 6.3.12, we took the liberty to do both pulses at once, and distributing
the terms obtained between the two token states obtained. Formally, in a run, there is an
order of application of the pulses. More than that: since a first rewrite may yield several
terms, we can choose the order of application of the remaining pulses independently for
all the terms. To make things clearer, let us denote a rewrite run as a directed graph
where vertices represent terms, and edges are labelled by a rewrite from a term to one
of the terms it rewrites to (we simply write g to represent →p|{g}). For instance, if a
diagram has 3 generators (gi, i ∈ {1, 2, 3}), one possible run of the pulse part of the
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rewrite strategy may be:

t

t1

t11

...

...

t111...

...

tn

tn1

...

tn11...

...

g1

g1

g2

g2

g2

g2

g2

g2

g3

g3

g3

g3

g3

g3

It is important to underline the fact that a run where all pulses have occurred is one
where every path from the root to a leaf goes through each generator exactly once.

The pulse strategy is very well-behaved:

Proposition 6.3.13.

The following properties hold for the pulse strategy:

• The “pulsing” strategy terminates.

When starting with an empty token state:

• In the terminal token state, there is no token on internal wires.

• In every term of the terminal token state, there is exactly one ascending (resp.
descending) token per input (resp. output).

Proof.

• Termination. In each branch, every generator pulses exactly once, and there is a
finite number of collisions (actually one per wire connecting two generators); and
there is a finite number of these branches, as each pulse creates a finite number of
terms.

• Absence of tokens on internal wires. We have to notice that each generator
pulses once in a sum of terms, each of which sports an outgoing token per wire
(after the rewrite step). Hence, after the pulse phase, in each term, each internal
wire has one descending token from the top generator, and one ascending token
from the bottom generator. There will then be a collision per term per internal
wire, ridding all internal wires from tokens in the end.

• Tokens on boundary wires. The reasoning is the same as previously, except
that on an input wire, there is no top generator able to create a descending token;
and similarly for output wires. In each term, there will hence be one remaining
ascending token per input, and one descending token per output wire.
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The graph may not necessarily be a tree, as two terms that are colinear αt and βt will
be merged into a single vertex (α + β)t. However, as we will see in the following, this
does not happen for the pulse part of the rewrite.

It is easy to check the following lemmas about the pulse part of a rewrite, which both
stem from the fact that pulses are totally independent: a token on a given wire and with
a given direction can only come from a single generator (the one connected to the wire
and which it is pointing away from):

Lemma 6.3.14. Pulse rewrites (on different generators) commute, i.e.:

...

...

...

g1

g1

g2

g2

g2

g2

≡ ...
...

g2

g2

g1

g1

g1

g1

Proof. As we pulse all the generators before applying the collision, the commutation of
the order of the pulse is direct.

Lemma 6.3.15. The pulse part (and subparts) of a rewrite run is a directed rooted tree.

Proof. Direct by definition of the pulse.

It is also easy to get the following results on the collision part of the rewrite run:

Lemma 6.3.16. Collision rewrites commute.

Proof. As each wire have at most two tokens on it, two different collisions does not
interact with each other and hence commute.

Lemma 6.3.17. The collision part of the pulse strategy consists in an in-forest (a forest
whose edge points to the roots).

Proof. As some collision may merge, it makes it an in-tree. All terms at the end hence
form an in-forest.

This can be used to show that all possible orderings of the application of the pulses are
equivalent:

Theorem 6.3.18. The pulse rewrite strategy is confluent.
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Proof. To show confluence, we can show that, for a given diagram, there is a generic
run to which every other pulse run is equivalent. Provide an arbitrary (total) ordering
of the generators (g1 ≺ ... ≺ gn), and similarly on the wires (e1 ≺ ... ≺ em). The generic
canonical run pulses the generators always in the selected order, and then does the same
for the collisions.

Let us first focus on the pulse part of a given run. We can show that using commutation
of the pulses, we can get it in the same form as the canonical one: by induction, we can
show that every subtree can be put in a form that preserves the ordering. The base case
is obvious. For the induction part, consider a vertex t of the tree, and consider all its
subtrees t1, ..., tk, each on their own subalphabet of {g1, ..., gn}. It is easy to see that all
the subalphabets are the same, as every path goes through each generator exactly once,
and all edges from t to its children go through the same gi. By induction hypothesis,
all the subtrees can be put in a form that preserves the ordering of generators. Let gk1
be the first in this subalphabet, then either gi ≺ gk1 , in which case t is already in the
right form; or gk1 ≺ gi, in which case we can commute gi and gk1 and use the induction
hypothesis again on the subtrees.

t

t1

tk

...

gi

gi

{gk1 , ..., gkp} t

t′1

t′k

...

gi

gi

gk1 ≺ ... ≺ gkp

t gi≺gk1≺...≺gkp
gi≺gk1

t

t′1

t′k

...

gk1

gk1

{gi, gk2 , ..., gkp}
gk1≺gi

Ind.

Ind.

commutation

t gk1≺...≺gi≺...≺gkp

Hence, each pulse part of any pulse rewrite yields the same terms. From there, it is easy
to see that collisions can be commuted when necessary to get the canonical form, where
again the final terms do not change. This finishes the proof of confluence.

The pulse token machine will allow us to first define the asynchronous token machine,
following the same intuition as the pulse token machine for the ZX-Calculus described
in Section 5.5.1.

6.3.3. Token Machine’s Asynchronous Rewriting

We now introduce the set of rules for the Asynchronous Token Machine. When a token
flows through the graph it will rewrite according to the set of local rules. The rules are
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split in two: a single collision rule and a set of diffusion rules. The collision rule is the
same as before: e0 :: (e0 ↓ x)(e0 ↑ y)→c

〈
x y

〉
.

The diffusion rule tells us what to do when a token enters a node: tokens carrying an
annihilator will simply travel through the graph, duplicating itself through the other
input / output wire of the node. Otherwise, the token will travel through the node,
updating the state it carries and eventually generating new tokens on the other wires of
the node.

The diffusion rules are given by:

e1e0

e2

A B

A⊗ B

::

(e0 ↓ •)→d (e1 ↑ •)(e2 ↓ •)
(e1 ↓ •)→d (e0 ↑ •)(e2 ↓ •)
(e2 ↑ •)→d (e0 ↑ •)(e1 ↑ •)

(e0 ↓ tA)→d

∑
tB∈BB

(e1 ↑ tB)(e2 ↓ 〈tA, tB〉)

(e1 ↓ tB)→d

∑
tA∈BA

(e1 ↑ tA)(e2 ↓ 〈tA, tB〉)

(e2 ↑ 〈tA, tB〉)→d (e0 ↑ tA)(e1 ↑ tB)

e1e0

e2

A B

A⊕ B

::

(e0 ↓ •)→d

∑
tB∈BB

(e1 ↑ tB)(e2 ↓ injr tB) + (e1 ↑ •)(e2 ↓ •)

(e1 ↓ •)→d

∑
tA∈BA

(e0 ↑ tA)(e2 ↓ injl tA) + (e0 ↑ •)(e2 ↓ •)

(e2 ↑ •)→d (e0 ↑ •)(e1 ↑ •)
(e0 ↓ tA)→d (e1 ↑ •)(e2 ↓ injl tA)
(e1 ↓ tB)→d (e0 ↑ •)(e2 ↓ injr tB)

(e2 ↑ injl tA)→d (e0 ↑ tA)(e1 ↑ •)
(e2 ↑ injr tB)→d (e0 ↑ •)(e1 ↑ tB)

c

ene1

e0

A A

A

...
::

(ei ↓ tA)→d (e0 ↓ tA)
∏

k∈{1,...,n}\{i}

(ek ↑ •) for i ∈ {1, ..., n}

(ei ↓ •)→d

∑
k∈{1,...,n}\{i}

tA∈BA

(ek ↑ tA)(e0 ↓ tA)
∏

j∈{1,...,n}\{i,k}

(ej ↑ •)

+(e0 ↓ •)
∏

j∈{1,...,n}\{i}

(ej ↑ •) for i ∈ {1, ..., n}

(e0 ↑ •)→d

∏
j∈{1,...,n}

(ej ↑ •)

(e0 ↑ tA)→d

∑
k∈{1,...,n}

(ek ↑ tA)
∏

j∈{1,...,n}\{k}

(ej ↑ •)
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s
e0

e1

A

A

::

(e0 ↓ •)→d (e1 ↓ •)
(e1 ↑ •)→d (e0 ↑ •)

(e0 ↓ tA)→d s(e1 ↓ tA)
(e1 ↑ tA)→d s(e0 ↑ tA)

e0 e1

A A
::

(e0 ↑ •)→d (e1 ↓ •)
(e1 ↑ •)→d (e0 ↓ •)

(e0 ↑ tA)→d (e1 ↓ tA)
(e1 ↑ tA)→d (e0 ↓ tA)

e0 e1

A A

::

(e0 ↓ •)→d (e1 ↑ •)
(e1 ↓ •)→d (e0 ↑ •)

(e0 ↓ tA)→d (e1 ↑ tA)
(e1 ↓ tA)→d (e0 ↑ tA)

e0

1

::
(e0 ↑ •)→d 1
(e0 ↑ ?)→d 1

The upside-down versions of each of these generators can easily be obtained by simply
exchanging ↑ and ↓.

With this token machine, it is important that we give priority to collisions, as to not
allow token to cross each other without colliding, just as in Chapter 5. We then take
the same definition of collision-free token state (Definition 5.3.6) and of rewriting system
(Definition 5.3.7.)

Definition 6.3.19 (Asynchronous Token Machine Rewriting System). A rewrite step
(→) is defined as a diffusion rule, followed by all possible collisions involving tokens
arising from this rewrite, until none apply, →:=→d;→max

c

Remark 6.3.20. Another possible definition of the rewriting system is to use the Pulse
Machine. Following intuition given in Section 5.5.1, a diffusion rule from the asyn-
chronous machine is equivalent to a pulse (on the same generator) followed by a collision
(on the wire that bore the initial token): →d=→p|g;→c. We will use this extensively in
the proofs.

Example 6.3.21. Taking back the NOT diagram from Example 6.3.12, we now use the
Asynchronous rewriting machine with initial state (e0 ↓ injl ?), underlying the term
being rewritten:

e0

1⊕ 1

1⊕ 1

e1 e2

e3

:: (e0 ↓ injl ?)
→d (e1 ↓ ?)(e2 ↓ •)
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→d (e3 ↓ injr ?)(e2 ↑ •)(e2 ↓ •)
→c (e3 ↓ injr ?)

When a token in the state injl − enters a plus node, it will go on the left output,
producing a annihilator on the right output as a way of indicating that this branch cannot
be taken. Instead, if we had rewritten the annihilator first we would have gotten:

(e1 ↓ ?)(e2 ↓ •)
→d (e1 ↓ ?)(e1 ↑ ?)(e3 ↓ injr ?) + (e1 ↓ ?)(e1 ↑ •)(e3 ↓ •)
→c (e3 ↓ injr ?) + (e1 ↓ ?)(e1 ↑ •)(e3 ↓ •)
→c (e3 ↓ injr ?)

Finally, if we took for initial token state (e0 ↑ injl ?)(e0 ↓ injl ?) + (e0 ↑ injr ?)(e0 ↓
injr ?) + (e0 ↑ •)(e0 ↓ •) we would have gotten the same results as the one from Exam-
ple 6.3.12. This token state is reminiscent of the initial token state from Theorem 5.3.25.

An important fact is the following:

Lemma 6.3.22. In the run of a well-formed cycle-balanced token state, collisions and
pulses can commute in the following sense:

...

g

g

... ≡
...

g

g

...

g

gc1

cn

c1

cn

c1

cn

...
...

Proof. Let us consider generator g on which the pulse applies, and term t1 with collision
c1 that happens before the pulse (one of the other collisions may happen on the same
wire). The collision necessarily happens between two tokens on the same wire e1. Notice
that because of well-formedness, e1 cannot be connected to g. Hence, the collision and
the pulse are independent, we have:

...

g

g

...
≡

c1

cn

c2
...

g

g

...

c1

cn

c2 c1

g

g

...

Continuing with all collisions gives the desired result.
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Example 6.3.23. We run a simple example of the execution of the Token Machine.
Underlined terms are the one being rewritten.

c

c c

c

α λ

γβ

e1

e7
e6

e8

e12

e5
e4

e3e2

e11
e10e9

e13
e14

1⊕1

1⊕1

:: (e1 ↓ injl ?)→p (e2 ↓ ?)(e3 ↓ •)
→p (e4 ↓ ?)(e3 ↓ •)(e5 ↓ •) + (e5 ↓ ?)(e3 ↓ •)(e4 ↓ •)
→2
p α(e8 ↓ ?)(e3 ↓ •)(e5 ↓ •) + β(e10 ↓ ?)(e3 ↓ •)(e4 ↓ •)
→2
p α(e12 ↓ ?)(e3 ↓ •)(e5 ↓ •)(e9 ↑ •) + s

→2
p α(e12 ↓ ?)(e6 ↓ •)(e7 ↓ •)(e10 ↓ •)(e9 ↑ •) + s

→p α(e12 ↓ ?)(e9 ↓ •)(e7 ↓ •)(e10 ↓ •)(e9 ↑ •) + s

→c α(e12 ↓ ?)(e7 ↓ •)(e10 ↓ •) + s

→p α(e12 ↓ ?)(e11 ↓ •)(e10 ↓ •) + s

→p α(e14 ↓ injl ?)(e13 ↑ •)(e11 ↓ •)(e10 ↓ •) + s

→p α(e14 ↓ injl ?)(e10 ↑ •)(e11 ↑ •)(e10 ↓ •)(e11 ↓ •) + s

→2
c α(e14 ↓ injl ?) + s

→∗ α(e14 ↓ injl ?) + β(e14 ↓ injr ?)

Where s = β(e13 ↓ ?)(e3 ↓ •)(e4 ↓ •)(e11 ↑ •) and rewrites similarly as the other operand
of the +.

This diagram describes a linear operator from the spaces of input token of type 1⊕ 1 to
the spaces of output token of type 1⊕1, that sends (e0injl ?) to α(e14 ↓ injl ?)+β(e14 ↓
injr ?) and (e1injr ?) to γ(e14 ↓ injl ?) + λ (e14 ↓ injr ?). This map can therefore be

seen as the

(
α γ
β λ

)
matrix.

This is very reminiscent of the rewrite strategy from Chapter 5, and indeed several
results can be transported to our framework. Not all initial configurations make sense,
or even terminate in the token machine’s semantics, so we start by narrowing the set of
allowed states, such as having two tokens on the same output wire without colliding.

Definition 6.3.24 (Polarity of a Term in a Path). Let D be a diagram, and p ∈ Paths(D)
be a path in D. Let t = (e, d, x) be a token on D. Then:

P (p, t) =


1 if e ∈ p and e is d-oriented

−1 if e ∈ p and e is ¬d-oriented

0 if e /∈ p
We extend the definition to any term α t1...tm of a token-state s:

P (p, 0) = P (p, 1) = 0, P (p, α t1...tm) = P (p, t1) + ...+ P (p, tm).
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Definition 6.3.25 (Well-formedness). Let D be a diagram, and s a token state on D.
We say that s is well-formed if for every term t in s and every path p ∈ Paths(D) we
have P (p, t) ∈ {−1, 0, 1}.

As before, well-formedness is invariant under any of the token machine rewriting rule
defined above. It prevents “bad”, unwanted configurations, such as for instance the
possibility for two tokens in the same term to be on the same wire, facing the same
direction, but with different states. It does not, however, prevent infinite runs. We can
do so by requiring the cycle-balanceness:

Definition 6.3.26 (Cycle-Balanced Token State). Let D be a diagram, and t a term
in a token state on D. We say that t is cycle-balanced if for all cycles c ∈ Cycles(D)
we have P (c, t) = 0. We say that a token state is cycle-balanced if all its terms are
cycle-balanced.

We recover Proposition 5.3.11, Proposition 5.3.12, Proposition 5.3.13, Lemma 5.3.15
and Theorem 5.3.16 in this new setting, the proofs are the same:

Proposition 6.3.27 (Invariance of Well-Formedness). Well-formedness is preserved by
( ): if s ∗ s′ and s is well-formed, then s′ is well-formed.

Proposition 6.3.28 (Full Characterization of Well-Formed Terms). Let D be a Many-
Worlds diagram, and s ∈ tkS(D) be ill-formed, i.e. there exists a term t in s, and
p ∈ Paths(D) such that |P (p, t)| ≥ 2. Then we can rewrite s s′ such that a term in s′

has a product of at least two tokens of the form (e0, d, ).

Proposition 6.3.29 (Invariant on Cycles). Let D be a Many-Worlds diagram, and c ∈
Cycles(D) a cycle. Let t1, . . . , tn be tokens, and s be a token state such that t1...tn  ∗ s.
Then for every non-null term t in s we have P (c, t1...tn) = P (c, t).

Lemma 6.3.30 (Rewinding). Let D be a Many-Worlds diagram, and t be a term in
a well-formed token state on D, and such that t  ∗

∑
i λiti, with (en, d, x) ∈ t1. If t

is cycle-balanced, then there exists a path p = (e0, ..., en) ∈ Paths(D) such that en is
d-oriented in p, and P (p, t) = 1.

Theorem 6.3.31 (Termination of well-formed, cycle-balanced token state). Let D be
a Many-Worlds diagram, and s ∈ tkS(D) be well-formed. The token state s is strongly
normalizing if and only if it is cycle-balanced.

Proposition 6.3.32 (Local Confluence). Let D be a Many-Worlds diagram, and s ∈
tkS(D) be well-formed and collision-free. Then, for all s1, s2 ∈ tkS(D) such that
s1

 s s2, there exists s′ ∈ tkS(D) such that s1  ∗ s′ ∗  s2.
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Proof. We can directly adapt the proof from Proposition 5.3.18. When two rewrites are
applied to tokens at position e and e′, we once again reason on the distance between the
two tokens. All the initial cases are the same, so we only need to look at when d(e, e′) = 1.
We recall that the two tokens have to point to the same generator (otherwise they would
not respect well-formedness). We then show the property for all generators and by case
analysis on the state carried by the tokens:

• e0 e1

A A

, for any state t, t′ we have:

(e0 ↓ t)(e1 ↓ t′) →d (e1 ↑ t)(e1 ↓ t′)
↓d ↓c

(e0 ↓ t)(e0 ↑ t′) →c

〈
t t′

〉
• Cap is similar

•
e1e0

e2

A B

A⊕ B

: We reason by case hypothesis on the state of the tokens.

–
(e0 ↓ t)(e2 ↑ injl t′) →d (e1 ↑ •)(e2 ↓ injl t)(e2 ↑ injl t′)

↓d ↓c
(e0 ↓ t)(e0 ↑ t′)(e1 ↑ •) →c (e1 ↑ •)

〈
t t′

〉

–
(e0 ↓ t)(e2 ↑ injr t′) →d (e1 ↑ •)(e2 ↓ injl t)(e2 ↑ injr t′)

↓d ↓c
(e0 ↓ t)(e1 ↑ •)(e2 ↑ t′) →c 0

–

(e0 ↓ •)(e2 ↑ •) →d (
∑
tB∈BB

(e1 ↑ tB)(e2 ↓ injr tB) + (e1 ↑ •)(e2 ↓ •))(e2 ↑ •)

↓d ↓c
(e0 ↓ •)(e0 ↑ •)(e1 ↑ •) →c (e1 ↑ •)

–
(e0 ↓ t)(e2 ↑ •) →d (e1 ↑ •)(e2 ↓ injl t)(e2 ↑ •)

↓d ↓c
(e0 ↓ t)(e0 ↑ •)(e1 ↑ •) (e1 ↑ •)→c (e1 ↑ •)

–
(e0 ↓ t1)(e1 ↓ t2) →d (e1 ↑ •)(e2 ↓ injl t1)(e1 ↓ t2)

↓d ↓c
(e0 ↓ t1)(e2 ↓ injr t2)(e0 ↑ •) (e1 ↑ •)→c 0

– All the other cases being similar.

146



Chapter 6. Many Worlds Calculus

• The cases
e1e0

e2

A B

A⊗ B

and c

ene1

e0

A A

A

...
are akin to the case of the

e1e0

e2

A B

A⊕ B

.

• s
e0

e1

A

A

–
(e0 ↓ •)(e1 ↑ t) →d (e1 ↓ •)(e1 ↑ t)

↓d ↓c
s(e0 ↓ •)(e0 ↑ t) →c 0

–
(e0 ↓ t1)(e1 ↑ t2) →d s(e1 ↓ t1)(e1 ↑ t2)

↓d ↓c
s(e0 ↓ t1)(e0 ↑ t2) →c s

〈
t1 t2

〉
– All the other cases being similar.

The upside-down version of each generator is similar.

Corollary 6.3.33 (Confluence). Let s be a well-formed, cycle-balanced token state on
a diagram D. Then (→) terminates on s, and it is confluent.

Finally, we can now relate the pulse token machine to the asynchronous one:

Theorem 6.3.34 (Relation to the Pulse Strategy). Let t be a well-formed cycle-balanced
term on a connected diagram D. A generator will be visited by tokens during the rewrite
if there exists a path p from a token of t leading to the generator such that P (p, t) = 1.
Call S the set of generators that will be visited.

Then, if t→max↓s then t→all
p|S ;→max

c ↓s.

In other words, the result of the rewrite strategy on the term t is the same as the pulse
strategy on t restricted to S.

Proof. First, following Remark 6.3.20 we remind that a diffusion rule is equal to a pulse
followed by collision.

Hence →=→d;→max
c =→p|g;→c;→max

c

We write c|E(g) for the application of the collisions on the edges of a given generator g.
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First, consider the following run of the asynchronous token machine:

t ...

...

. . .

. . .

...

. . .

. . .

...

...

. . .

. . .

...

. . .

. . .

...

p|{g}

p|{g}

c|E(g)

c|E(g)

∗

∗

p|{g′}

p|{g′}

p|{g′′}

p|{g′′}

Then, following Lemma 6.3.22 we can push the collisions rules at the end of the rewriting
sequence:

t ...

...

. . .

. . .

...

. . .

. . .

...

...

. . .

. . .

...

. . .

. . .

...

p|{g}

p|{g}

p|{g′}

p|{g′}

p|{g′′}

p|{g′′}

...

cmax

cmax

cmax

cmax

This form a run of the pulse token machine, which by the confluence of the pulse token
machine (Theorem 6.3.18) and the fact pulse commutes (Lemma 6.3.14), we can make
sure that on each step, all terms pulse on the same generator as in:

t ...

...

. . .

. . .

...

. . .

. . .

...

...

. . .

. . .

...

. . .

. . .

...

p|{g}

p|{g}

p|{g′}

p|{g′}

p|{g′}

p|{g′}

...

cmax

cmax

cmax

cmax

6.3.4. Discussions

As discussed in Section 6.2.1, some diagrams does not make sense. We will consider two
diagrams, both of input type A ⊕ B, for some A,B and a run of each diagram, using
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the asynchronous token machine. For both diagrams, the initial token state consist of a
single token entering through the sole input of type A⊕B in the state injl t for some t
an element of the basis of type A.

e1 e2

e0

:: (e0 ↓ injl t)
→d (e1 ↓ t)(e2 ↓ •)
→d (e2 ↑ t)(e2 ↓ •)
→c 0

e0

e1 e2

e3

:: (e0 ↓ injl t)

→d (e1 ↓ t)(e2 ↓ •)
→d (e1 ↓ t)(e1 ↑ •)(e3 ↓ •)
→c 0

In both case, the end result is 0: this can be explained by the fact that in both case,
we try to make interact two wires that are in ⊕ with one another: on the first diagram
through a cup, and the second diagram through a tensor. Once two wires have been split
by a ⊕, they cannot interact freely with one another. This requires us to be careful when
we will consider the equational theory. In particular, this motivates the introduction of
the worlds labellings where each wire will be affected a set of worlds, making sure that
we can distinguish between diagrams that have a proper semantics and whose semantics
will just be 0.

6.4. Worlds labelling

We now want to define the worlds labelling and equational theory of the language. We
take inspiration from the Token Machine in order to define both. For instance, take the
diagram that splits and merges wires through tensors:

If a token carries the state 〈t1, t2〉 of type A ⊗ B, it will be split into the two branches
before being remerged again, so it corresponds to just doing nothing, therefore we should
have the following equation:

≡

and similarly for the plus. Now imagine two scalar one after another on a wire:
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s

t

then, a token entering this diagram will collect both scalar in, creating their product,
therefore we should get the following equations:

≡
s

t
s× t

Now, consider the diagram of a plus where one of the input wire is bent backward by a
cap and put in parallel of the output wire of the plus, together with another wire:

This diagrams cannot be represented in sheet diagrams as the two parallel wire at the
bottom left lives in “disjoint worlds” and hence cannot interact, therefore those two wire
are in a sort of superposition. It is also possible to consider that the third wire is in all
the worlds and hence in superposition with nobody. In sheet diagrams, one cannot have
next to each other, two sheets in superposition and one not in superposition with any
of those.

One thing that is not inherently clear is how to represent the fact that a part of a diagram
can be disabled by an annihilator. This will be done through the worlds labelling. We
call worlds labelling the attribution of multiple worlds to a single wire. The worlds
labelling should be thought of as a kind of validity criterion, similarly to what is done in
Proof Nets. As mentioned, a wire can be deactivated, this was represented in the token
machine with the use of the annihilator. When a token enters a co-contraction-node,
we take the sum of all the possible outputs where the token can be, in product with
annihilators on all the other branches, similarly, the worlds labelling of the output of
the co-contraction-node will have to be all disjoint, while its input will be the disjoint
union of all the possible worlds labelling of the output. We then define the equational
theory on our diagram.

In order to label wires of our diagram with sets of worlds w ⊆W from a given world set
W . For each world a ∈ W , wires labelled by a set containing a are said to be ”enabled
in a”, and the others are said ”disabled in a”. This allows us to correlate the enabling
of wires. Before making this formal, we illustrate this notion through the following
example:
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c

c

1⊕ 1 : {a, b, c}

1 : {a} 1 : {b, c}

1⊕ 1 : {a, b, c}

1⊕ 1 : {b, c}

1 : {a}
1 : {b} 1 : {c}

1⊕ 1 : {b, c}

1⊕ 1 : {a, b, c}1⊕ 1 : {a, b, c}

Figure 6.4.: Controlled Not with world set {a, b, c, ?}

Example 6.4.1. The ”controlled not” on quantum bits can be represented by the Fig-
ure 6.4. The figure is split into two parts: the control part on the left-hand-side, and the
computational part on the right-hand-side. The idea is that the control part, that uses
⊕, will behave as an if-then-else and will bind the world a to the case where the control
quantum bit is |0〉, and the worlds b and c to the case where the control quantum bit is
|1〉. Lastly, the world ? appears nowhere in the labels, and corresponds to ”we do not
evaluate this circuit at all”1. On the computational part, we apply the identity within
the world a, we negate |0〉 into |1〉 within b, and we negate |1〉 into |0〉 within c. The
”controlled not” above can then be seen as a diagram DCNOT of A → A together with a
labelling function `A which labels every wire with a set of worlds.

We now give a formal definition of the concept of worlds:

Definition 6.4.2 (Worlds Labelling). Given a diagram D and a world set W , the worlds
labeling consist of a labelling function `D from the wires of D to the subsets of W ,
satisfying the following constraints:

w w v
w

w
s

w

w

w v

wtv

w w

w w

∀n ≥ 0, c
w1 wn

w1 t · · · t wn

· · ·

where t denotes disjoint set-theoretic union. The constraints for the mirrored versions
are similar. The sequential composition ◦ and the parallel composition � preserve the
labels.

We write f : ���n(Ai, wi) → ���m(Bj , vj) for a diagram f with n input wires of type
A1, . . . , An with worlds labelling w1, . . . , wn and m output wires of type B1, . . . , Bm with
worlds labelling v1, . . . , vm.

6.5. The Denotational Semantics

We give a few intuitions and how the denotational semantics of the Many-Worlds Calcu-
lus works without going into the details and precise definition, as it was mainly developed

1While not strictly necessary, it is often practical to have a world absent from every wire.
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by Marc de Visme and Renaud Vilmart. More details can be found in [Cha+22].

Intuitively, the denotational semantics is based on the semantics of the pulse rewriting
strategy and was developed in order to match it correctly, even though a formal relation
between the two, in the style of Theorem 5.3.25 is not yet established.

The semantics comes in two forms: a first one, noted JDKa which correspond to the
semantics of the diagram D on the world a, and another JDK which consist of the sum
of the semantics JDKa for each world a in the world set W . In some way, JDKa can also
be seen as the denotational equivalence of the asynchronous rewriting while JDK as the
denotational equivalence of the pulse rewriting.

The semantics is defined on finite dimensional R-modules and, as for the ZX-Calculus,
the semantics of each generators is defined as a matrix, in this section we only show the
semantics of the tensor and plus in order to give an intuition of the semantics.

e1e0

e2

A B

A⊗ B

:: →p

∑
tA∈BA
tB∈BB

(e0 ↑ tA)(e1 ↑ tB)(e2 ↓ 〈tA, tB〉)

+(e0 ↑ •)(e1 ↑ •)(e2 ↓ •)

u

ww
v

A : {a} B : {a}

A⊗B : {a}

World set: {a, ?}}

��
~ =

A�B A� • •�B •� •( )
A⊗B Id 0 0 0
• 0 0 0 1

e1e0

e2

A B

A⊕ B

:: →p

∑
tA∈BA

(e0 ↑ tA)(e1 ↑ •)(e2 ↓ injl tA)

+
∑
tB∈BB

(e0 ↑ •)(e1 ↑ tB)(e2 ↓ injr tB)

+(e0 ↑ •)(e1 ↑ •)(e2 ↓ •)

u

ww
v

A : {a} B : {b}

A⊕B : {a, b}

World set: {a, b, ?}}

��
~ =

A�B A� • •�B •� •( )
A⊕B 0

0
Id
0

0
Id

0
0

• 0 0 0 1

In each matrix, the last-line last-column correspond to the case where only annihilators
are pulsed: as the annihilators destroys everything, the values are fill to 0, with a 1 in
the diagonal to indicate the fact that we do not evaluate this diagram at all.

In the case of the tensor, the two lines A�• and •�B correspond to the fact that, in the
type of the diagram A�B, we only have the data of type A (resp. of type B) available,
in both case the matrix is set to 0, as it is impossible to have only one of the two data in
a tensor, and hence, in the case A�B, where both data are available, we set the matrix
to the identity, as it correspond to the tokens just flowing through the diagram.
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c ≡W
cc

≡W
c

· · ·· · · · · ·· · ·
w1 wn w1 wn

tnwitnwi tnwi tnwi

w1 wn w1 wn

c

c c
≡W

· · · · · ·

tnwi tnvi

w1 t v1wn t vn w1 t v1wn t vn

tnwi tnvi

c

s

s s

c

· · · · · ·

tnwi tnwi

w1 w1 wnwn

≡W
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Worlds annotations on wires are
ommited when uniquely deter-
mined. We assume that:
w ∩ v = ∅
wi ∩ wj = ∅ whenever i 6= j
vi ∩ vj = ∅ whenever i 6= j

w1
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w
n ∩
v
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Mirrored up-down versions of
those equations can be deduced
from the compact closure.
Additional equations for the ⊕
and the scalars are provided in
the next Figure.

c

w

w

≡W

w

w

Figure 6.5.: Equations with a Fixed World Set W

The same intuition can be given for the plus: in the case A�B we get 0, as both data
cannot be avaiable, and then we let the token flow either in A or in B in the case A�•
and •�B.

The denotation semantics have a more rigorous definition in [Cha+22] and comes with
an universality theorem (i.e. it can represent any matrices) and completeness theorem
with regards to the equational theory.

6.6. The Equational Theory

The equational theory is defined in two steps:

1. A set of equations for a fixed set of worlds W . We write ≡W for the induced con-
gruence, in other words the smallest equivalence relation satisfying those equations
and such that f ≡W f ′ =⇒ ∀g, h, l, g ◦ (f �h) ◦ k ≡W g ◦ (f ′�h) ◦ k. We list
those equations in Figure 6.5.
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0F

· · ·

· · ·

w
0F\w

· · ·

· · ·
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· · ·

· · ·

w v

w′ v′
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· · ·

· · ·

W WW\w W\z

≡

Worlds sets
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∩
w
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v
∩
v
′

Worlds sets
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· · ·

· · ·

w ≡

· · ·

· · ·

G F

· · ·

· · ·

w ≡

· · ·

· · ·

G

Where:
w = {a1, . . . , an}
w′ = {a′1, . . . , a′n}
w′′ = {a′′1, . . . , a′′n}
G is F where every in-
stance of the world ai
has been replaced by
both a′i and a′′i .

Where:

z =
(w\w′) ∪ (w′\w)
∪(v\v′) ∪ (v′\v)

F\w (resp. F\z) is F
where every world of w
(resp. z) has been re-
moved from the labels.

Figure 6.6.: Equations with Side-Effects on World Sets

2. Five additional equations with side effects on the set of worlds. We write ≡ for the
induced equivalence relation. We have: two equations allowing the annihilation (or
creation, when looking at them from right to left) of worlds due to coproducts or
scalars (first row of Figure 6.6); Two equations allowing the splitting (or merging,
when looking at them from right to left) of worlds due to coproducts or scalars
(second row of Figure 6.6).

Example 6.6.1. We consider R = C. We illustrate how our language can encode some
basic quantum primitive in it and show how they operate. In Figure 6.7 we show the
encoding of a quantum bit α |0〉 + β |1〉 and the Hadamard unitary. In particular, the
Plus allows to ”build” a new quantum bit from two scalars in parallel or to ”open” a
quantum bit to recover its corresponding scalars, the left branch corresponding to |0〉 and
the right branch to |1〉. The meaning of the Contraction is better seen when applying
Hadamard to a quantum bit as we show in Figure 6.8: it allows us to duplicate and sum
scalars. The rewriting sequence of Figure 6.8 is made using the equational theory defined
in Section 6.6.

6.7. Induced Equations

In Figure 6.5, we presented a set of equations reasonably small, by having equations
parametrized by the arity of the contraction, and by omitting a lot of useful equations
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α |0〉+ β |1〉 α β ∈ CD(���,1⊕ 1)
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Figure 6.7.: A Quantum Bit and the Hadamard Unitary
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Figure 6.8.: Applying the Hadamard unitary to a quantum bit

that can be deduced from them. In Figure 6.9, we take the opposite approach: we give
equations using the contractions of arity zero and two (which are sufficient to generate all
the other contractions) and we provide additional axioms that follow from Lemma 6.7.1
and Lemma 6.7.2.

Note that this is only an alternative presentation to the equational theory for ≡W , the
axioms of Figure 6.6 are still required for ≡. We can also note the two representations
are equivalent by taking the contraction of arity n as a syntactic sugar for multiple
composition of the binary contraction.

Lemma 6.7.1. Whenever wi are disjoints sets of worlds, we have the following:

c ≡W
· · · · · ·
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w1 w1wn wn

w1 wn

c
· · · · · ·c c
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· · ·
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Figure 6.9.: Alternative Presentation of the Equational Theory for a Fixed World Set W

Lemma 6.7.2. Whenever wi are disjoint sets of worlds, and that the vis are disjoint
sets of worlds too, we have the following:

c
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c
· · ·
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Proof. We provide a proof for the third equation, the first two are proven similarly.

c
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Lemma 6.7.3 (Naturality of the Binary Contraction). For every f : �n(Ai : wi) →
�m(Bj : vj) with world set W and every u ⊆W , we have

f

c c

· · ·
w1\u wn\u w1 ∩ u wn ∩ u

v1 vm

≡W
c c

w1\u wn\u w1 ∩ u wn ∩ u

v1 vm

· · ·

· · ·

f\u f ∩ u
· · · · · · · · ·

· · · · · ·

· · ·

where f\u : �n(Ai : wi\u) → �m(Bj : vj\u) is equal to f where every worlds label w
has been replaced by w\u, and similarly for f ∩ w.

Lemma 6.7.4 (Empty World). For every f : �n(Ai : ∅)→ �m(Bj : ∅) with world set
W but such that every worlds label of f is ∅, we have

f

∅ ∅

· · ·

· · ·

∅ ∅

≡W
c c

c c
· · ·

· · ·
∅ ∅

∅ ∅

Proof. This is simply proven by replacing every wire by two contractions of arity zero
(sixth axiom of Figure 6.5 with n = 0), and then using the naturality of the contraction
of arity zero (last two lines of Figure 6.5 with n = 0) to consume every generator.

Example 6.7.5 (The Quantum Switch). Similarly to the ”controlled not” in Exam-
ple 6.4.1 where a quantum bit controls whether the identity or a negation is applied to
some data, one can consider the case where a quantum bit control whether U ◦V or V ◦U
is applied to some data (for U and V two quantum operators on the same type A).

On the rightmost part of Figure 6.10, one can see the most direct implementation of this
”quantum switch”, but this implementation uses two copies of U and V . On the leftmost
part of the figure, we show another implementation which only relies on one copy of
each, and both can be rewritten into another using the equational theory.

In those diagrams, the world set is W = w t v and we rely on violet, blue and red wires
to indicate respectively worlds labels wtv, w and v. Each figure has a control side which
operates on a quantum bit (type 1⊕ 1) and binds the world w to |0〉 and the world v to
|1〉; and a computational side which operates on some data of an arbitrary type A, on
which could be applied U and/or V .

The first rewriting step relies on the two lemmas below, both of which being deducible
from the equational theory (see Section 6.7). The second rewriting step is simply using
the properties of a compact closed category.
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Figure 6.10.: Rewriting the Quantum Switch
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U
≡W

c

U\v U\w c

c
≡W

Remark 6.7.6. With Marc de Visme and Renaud Vilmart, a categorical definition of
the graphical language has been defined in the setting of compact closed and auto-dual
coloured PROP. With it comes a denotational semantics that is sound and complete with
regard to the equational theory. Also, a normal form of the diagrams have been developed,
which allowed to show the completeness. As most of this work was developed by Marc
de Visme and Renaud Vilmart, and was not necessary for this thesis, we did not put it
here. The interested reader can refer to [Cha+22].

6.8. Comparison with Other Graphical Languages

The distinctive feature of the Many-Worlds Calculus is that it graphically puts the
tensor and the biproduct on an equal footing. By comparison, other graphical language
for quantum computing are inherently centred around either one of them. The ZX-
calculus [CD11] and cousin languages ZW- and ZH-Calculi [BK19; Had15], as well as
Duncan’s Tensor-Sum Logic [Dun09], use the tensor product as the default monoid,
while more recent language – particularly for linear optics [CP20; FC22; Clé+22b] –
use the biproduct. We have a closer look at each of them in the following and show
how – at least part of – each language can be encoded naturally in the Many-Worlds
Calculus. Most of them comes equipped with an equational theory. By completeness of
our language [Cha+22], all the equations expressible in the fragments we consider can
be derived in our framework.
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6.8.1. ZX-Calculus

The first difference is the restrictions of the ZX-calculus to computations between qubits,
in other words linear map from C2n 7→ C2m , while our language can encode any linear
map from Cn 7→ Cm. The Tensor generator allowing the decomposition of C2n into
instances of C2 was already present in the scalable extension of the ZX-calculus [CHP19],
but the main difference comes from the Plus (and the Contraction).

 
eiα

1 : {b}1 : {a}

1⊕ 1 : {a, b} 1⊕ 1 : {a, b}

1⊕ 1 : {a, b}

α

Additionally, every ZX-diagram can be encoded in our graphical language. The identity,
swap, cup and cap of the ZX calculus are encoded by the similar generators over the type
1⊕ 1, the Hadamard gate is encoded as in Figure 6.7, and the green spider is encoded
as shown above. An encoding for the red spider can then be deduced from those.

6.8.2. Tensor-Sum Logic

The core difference between the Tensor-Sum Logic [Dun09] and ours is the presence of
the contraction in our graphical language. They instead rely on an enrichment of their
category by a sum, which they represent graphically with boxes. We show on below how
the morphism f + g would be encoded in both their and our language. More generally,
their boxes correspond to uses of our contraction generator in a ”well-bracketed” way.
Another point of difference is their approach to quantum computation, as we do not
assign the same semantics to those superpositions of morphisms. In their approach, the
superposition is a classical construction and corresponds to the measurement and the
classical control flow, while in our approach the superposition is a quantum construction
and corresponds to the quantum control.

f g f g

c

c

 
w v

6.8.3. PBS-Calculus

The PBS Calculus [CP20] allow one to represent coherent quantum control by the use
of polarizing beam splitters (pbs): whenever a qubit enter a pbs node, depending on the
polarity of the qubit it will either go through or be reflected. By making implicit the
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target system, controlled by the optical system represented by the diagram, the PBS-
Calculus allows one to encode the Quantum Switch (depicted below). The pbs generator
is related to the ⊕ of the Many-Worlds.

| U

V

|

The first main difference with our language is that, since the generators of the PBS-
Calculus represent physical components, any PBS-diagram is by construction physical,
while our approach is more atomic and decomposes physical components into abstract
smaller ones. The second main difference lie in the trace: while they can allow a particle
to pass through a wire at most twice, in our system, each wire can be used at most once:
more formally, their trace is based on the coproduct while ours is on the tensor product.
If we are assured that each wire can only be used once during the computation, any PBS-
diagram can be translated to the Many-Worlds calculus directly, with the transformation
below, where we distinguish the control system (the part of the diagram connected to

s) from the target system (connected to c s) which is implicit in the PBS-Calculus.

|  

c

c

c

c

6.8.4. LOv-Calculus

In the PBS-Calculus, the qubit in the control system (the one explicitly represented)
cannot be put in arbitrary superpositions of |0〉 and |1〉 during the computation. To allow
this feature, we may add some linear optical components to the language’s generators and
end up with the LOv-Calculus [Clé+22b]. In this language, there is no trace and there
is a unique photon travelling the circuit, which relieves us of the previous constraint.
There is also no need for an implicit target system anymore. All wires at the interface
between the generators are of type 1⊕1, and parallel wires have disjoint sets of worlds.
Each generator can then be interpreted as follows:

c

c

c

c

cos(θ)

cos(θ)

i sin(θ)

i sin(θ)

 
θ

c

c

c

c

cos(θ)

cos(θ)

i sin(θ)

i sin(θ)

 θ

|  eiϕ ϕ

0  c
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6.8.5. Path-Calculus

The Path-Calculus is another recent graphical language for linear optical circuits [FC22].
Its generators correspond directly to a subset of the Many-Worlds’ with  c ,

 c and  rr ; where each wire has type 1 and where parallel
wires are on disjoint sets of worlds. This language is then used as the core for a more
expressive language called QPath, which this time cannot be directly encoded in our
language, except when restricting the set of generators (specifically to n = 1), in which

case  
|1〉

.

6.8.6. Linear Logic’s Proof Nets

In a similar spirit to what is done with linear logic proof nets, the Many-Worlds Calculus
feature a validity criterion in the form of the world labelling. While in Linear Logic, a
non-valid proof structure has no computational content, in our case non-valid diagrams
(i.e. diagrams whose only worlds label is ∅) can be reduced under the equational theory
to a normal form and is captured by the semantics. As in the Many-Worlds Calculus,
formulas are self-dual, the connection with MALL validity criterion as in [HVG03] fall
short.

6.9. Representing Computation

As a motivational example, we may see how this Many-Worlds diagrams can be used to
represent computations expressed in the language of Chapter 4 that explicitly uses the
two compositions ⊗ (through pairs), and ⊕ (through pattern-matching).

6.9.1. Syntax of the Language

The language we present here is adapted from Chapter 4, with the addition of linear
combination of terms, as in [SVV18], but without abstraction nor recursion. The syn-
tax that is used in the language is given as follows, with scalars α ranging over the
commutative semiring R:

(Base types) A,B ::= 1 | A⊕B | A⊗B
(Isos, first-order) α ::= A↔ B

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉
(Patterns) p ::= x | 〈p1, p2〉
(Expressions) e ::= v | let p1 = ω p2 in e | e+ e | αe
(Isos) ω ::= {v1 ↔ e1 | · · · | vn ↔ en}
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(Terms) t ::= () | x | injl t | injr t | 〈t1, t2〉 |
αt | t+ t | ω t | let p1 = t in t

As before, the language features branching through the injl and injr constructors,
linear combinations of terms and expressions, and as before, the isos comes with the ODA
predicates, used in the typing rule of isos, to ensure exhaustivity and the non-overlapping
character of the left-hand and right expressions of the clauses, allowing in particular to
define unitaries (in the complex setting). Constraints on the linear combinations may
also be used to enforce probabilistic constraints (i.e., that states are normalized in the
quantum setting).

Terms and values are considered modulo associativity and commutativity of the addition,
and modulo the equational theory of modules.

α · (e1 + e2) = α · e1 + α · e2 1 · e = e

α · e+ β · e = (α+ β) · e α · (β · e) = (αβ) · e
0 · e1 + e2 = e2

We furthermore consider the value and term constructs 〈−,−〉, let− = − in −,
injl (−), injr (−) distributive over sum and scalar multiplication.

The typing judgements are the same as in Table 4.2 with the additional rules from [SVV18]:

Ψ; ∆ `e t1 : A Ψ; ∆ `e t2 : A

Ψ; ∆ `e t1 + t2 : A

Ψ; ∆ `e t : A

Ψ; ∆ `e α t : A

For a more complete description of the language, we refer the reader to [SVV18]. In the
following, we will use the shorthands ff := injl () and tt := injr ().

Example 6.9.1. In the case where R = C, one can encode the Hadamard gate by:{
ff ↔ 1√

2
(ff + tt)

tt ↔ 1√
2
(ff− tt)

}
: 1⊕ 1↔ 1⊕ 1

In particular, when R = C, the isos are necessary unitaries [SVV18] and when restricting
the type system to only the type of booleans 1⊕1 it is possible to encode any quantum
circuits inside the language.

For the encoding, we will take again the explicit substitution alternative rewriting system
from Chapter 4.

We recall Convention 4.4.21:

Convention 6.9.2. Given a substitution σ = {x1 7→ v1, . . . , xn 7→ vn} we will use the
shorthand letσ in t for letx1 = v1 in . . . letxn = vn in t.
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The results can be adapted in a straightforward way to this new language:

Property 6.9.3. Given a substitution σ = {xi 7→ vi} that closes a term t, then
letσ in t→∗eβ σ(t).

Property 6.9.4. Given two well-typed terms t, t′ such that t→ t′ then t→∗eβ t′.

6.9.2. Encoding into the Many-Worlds

One can encode any term of the language into a Many-Worlds diagram. Given some
typing derivation ξ of a term x1 : A1, . . . , xn : An `e t : B we write Lξ,W M for the
function that maps ξ to a diagram in the Many-Worlds Calculus with n input wires of
type A1, . . . , An and one output wire of type B and where W is the set of worlds needed
to encode ξ. For the typing derivation ξ of an iso `ω ω : A↔ B, Lξ,W M gives a diagram
with one input wire of type A and one output wire of type B.

In order to encode a term into the Many-Worlds it is important to know how many
worlds are needed. For that, we define W(t) as the set of worlds needed for t.

Definition 6.9.5. Let W be an infinite set of worlds, we define W(t), the set of worlds
needed for t by induction over t:

• W(1) = a ∈W such that a is fresh.

• W(injr t) =W(injl t) =W(t)

• W(〈t1, t2〉) =W(t1) ]W(t2)

• W(αt) =W(t)

• W(t1 + t2) =W(t1) ]W(t2)

• W(ω t) =W(ω)×W(t)

• W({v1 ↔ e1 | · · · | vn ↔ en}) =
⊎
iW(ei)

• W(let p = t in t′) =W(t)×W(t′)

Lξ,W(t)M is defined inductively over `e and `ω as shown in Figure 6.11. For the encoding,

we use the following syntactic sugar: :=

...
...

. In the remaining we will simply write

LtM for the encoding of the well-typed term t.

One can show that the input worlds and output worlds of an expression are the same:
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⦅

x : A `e x : A
⦆

=
A

⦅

`e () : 1
⦆

= 1

⦅ ξ

∆ `e t : A
∆ `e αt : A

⦆

=
α

LξM
...∆

⦅ ξ

∆ `e t : A
∆ `e injr t : A⊕B

⦆

=
LξM
...∆

c

⦅ ξ

∆ `e t : B
∆ `e injl t : A⊕B

⦆

=
LξM
...∆

c

⦅ ξ1

∆1 `e t1 : A

ξ2

∆2 `e t2 : B

∆1,∆2 `e 〈t1, t2〉 : A⊗B

⦆

=
Lξ1M
...
∆1

Lξ2M
...
∆2

⦅ ξ1

∆ `e t1 : A

ξ2

∆ `e t2 : A
∆ `e t1 + t2 : A

⦆

=

c c
...∆

c

Lξ1M
...

Lξ2M
...

⦅ ξ1

∆1 `e t1 : A1 ⊗ · · · ⊗An
ξ2

x1 : A1, . . . , xn : An,∆2 `e t2 : B

∆1,∆2 `e let 〈x1, . . . , xn〉 = t1 in t2 : B

⦆

=
Lξ1M
...
∆1

Lξ2M

...
∆2

...

⦅ ξi
∆i `e vi : A

ξ′i
∆i `e ei : B

`e {v1 ↔ e1 | · · · | vn ↔ en} : A↔ B

⦆

=

A

c

Lξ′1M Lξ′nM

c

Lξ1M† LξnM†...

B

......

⦅ ξ1

`ω ω : A↔ B

ξ2

∆ `e t : A
∆ `e ω t : B

⦆

=
Lξ1M
Lξ2M
...∆

Figure 6.11.: Inductive translation of terms from Section 6.9 into Many-Worlds diagrams.

Lemma 6.9.6. Given a well-typed term ξ : ∆ `e t : B, then Lξ,W(e)M have the same
worlds on all of its inputs and all outputs.

Proof. By a straightforward induction on t:

• Case x: as it is just the identity wire the worlds cannot change.

• Case (): direct as there is no input wire.

• All the other cases by direct application of the induction hypothesis on the sub-
terms.
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c

c c

cc cc

c c

c c

c

1√
2

1√
2

1√
2

−1√
2

{b, b′}{a0, a1, a2, a3, a
′
0, a
′
1, a
′
2, a
′
3}

(1⊕ 1)⊗ (1⊕ 1) : {a0, a1, a2, a3, a
′
0, a
′
1, a
′
2, a
′
3, b, b

′}

{a0, a1, a2, a3} {a′0, a′1, a′2, a′3} {b} {b′}

{b} {b′}
{b, b′}

ffxtt x

ytt ff y tt ffy y

{a0, a1, a2, a3} {a′0, a′1, a′2, a′3}

{a0, a1, a2, a3, a
′
0, a
′
1, a
′
2, a
′
3}

(1⊕ 1)⊗ (1⊕ 1) : {a0, a1, a2, a3, a
′
0, a
′
1, a
′
2, a
′
3, b, b

′}

〈tt, x〉 ↔
let y = H x in

1√
2
〈tt, y〉+ 1√

2
〈ff, y〉 〈ff, x〉 ↔

let y = Id x in
1√
2
〈tt, y〉 − 1√

2
〈ff, y〉

H

Figure 6.12.: Representation of the term t from Example 6.9.7.

Example 6.9.7. We can represent the term

t :=

{
〈tt, x〉 ↔ let y = H x in 1√

2
〈tt, y〉+ 1√

2
〈ff, y〉

〈ff, x〉 ↔ let y = Id x in 1√
2
〈tt, y〉 − 1√

2
〈ff, y〉

}
: (1⊕ 1)⊗2 ↔ (1⊕ 1)⊗2

(already given in [SVV18]) as shown in Figure 6.12. The yellow box stands for the
Hadamard gate (which one can build following Example 6.9.1). Each line of this iso-
morphism corresponds to a column of the figure. Each column start by matching the
input as 〈tt, x〉 or 〈ff, x〉, then compute y from x, and then build the output by fol-
lowing the syntax. The world set is computed by composing each of the blocks of this
term, using the world-agnostic composition of MW∀. It can be seen as a subset of
{a, b} × {c, c′} × {0, 1, 2, 3} where {a, b} corresponds to being on the first or second line
of the matching, {c, c′} being on the left or right of the sum, and {0, 1, 2, 3} being the
world set of the Hadamard gate.

We can then show that the reduction of the language matches the equational theory of
the Many-Worlds Calculus. First, we recall the notion of orthogonality between pure
values and show that two values are orthogonal when they do not match. Then, we show
that when the diagrams of orthogonal values are composed together, it reduces to the
diagram with empty worlds.

Definition 6.9.8 (Orthogonality on pure values). Two values v1, v2 of the same type
are said to be orthogonal, noted v1⊥v2 if it can be inferred from the following rules:
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injl v⊥injr v′
v⊥v′

injl v⊥injl v′
v⊥v′

injr v⊥injr v′

v⊥v′
〈v, v1〉⊥〈v′, v2〉

v⊥v′
〈v1, v〉⊥〈v2, v

′〉

Lemma 6.9.9. Given two well-typed values v1, v2 and a subsitution σ, if σ[v1] 6= v2 then
v1⊥v2

Proof. By a straightforward induction on the pattern-matching σ[v1] = v2, the case
where v1 = x or v1 = v2 = () cannot occur otherwise v1 and v2 would match. For the
other cases we can directly apply the induction hypothesis.

We can then show that orthogonal values, composed together cancel each other out and
destroy the worlds on their inputs and outputs:

Lemma 6.9.10. Given two well typed values ∆1 `e v1 : A and ∆2 `e v2 : A, if v1⊥v2

then

W

· · ·

· · ·

Lv1M†

Lv2M W ′

· · ·

· · ·
∅

∅
c c

c c

· · ·

· · · · · ·

· · ·

≡
∅

∅w w

w w

where W ′ = W\w.

Proof. By induction on v1⊥v2, for simplicity we do not draw the context.

• Case injl v⊥injr v′:

c

c

Lv1M†

Lv2M

w ∅

∅ w

w ≡

Lv1M†
c

∅ ∅ ≡
c

c
c

Lv2M
∅∅

• Case
v⊥v′

injl v⊥injl v′:

c

Lv2M

Lv1M†
w ∅

w ∅

w ≡

Lv1M†
c

w ∅ IH
=

c

Lv2M

∅

c
∅c

c

c
∅

c

c
∅

c
∅

≡

• Case
v⊥v′

injr v⊥injr v′ is similar.
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• Case
v⊥v′

〈v, v1〉⊥〈v′, v2〉:

Lv2M†

Lv′1M

Lv1M†
w w

w w

w ≡

Lv1M† Lv2M†

w w IH
=

c

Lv′1M

∅

c
∅Lv′2M

Lv′2M
c
∅

c
∅

≡
Lv2M†

∅
Lv′2M

c
∅

c
∅

• Case
v⊥v′

〈v1, v〉⊥〈v2, v
′〉 is similar.

Conversely, we can show that if two values matches under substitution σ, their compo-
sition gives the diagram where σ has been decomposed in a succession of let:

Lemma 6.9.11. Given two well-typed pure values ∆ `e v and ∆ `e v′ and any expres-
sion e such that ∆ `e e, given σ[v] = v′ such that σ = {(xi 7→ vi)i∈I}, then

Lv′M

LvM†

LeM
...

· · ·

≡ Lletσ in eM

...

Proof. By induction on σ[v] = v′:

• Case σ[x] = v′ then σ = {x 7→ v′} and we directly get the desired result:

Lv′M

LeM

• Case σ[()] = ():
LeM

≡
LeM

• Case

σ[v] = v′

σ[injl v] = injl v
′:

Lv′M c

cLvM†

LeM

. . .

...

w

w

w

∅

∅
≡

c

cLvM†

LeM
...

Lv′M
. . .

≡
LvM†

LeM
...

Lv′M
. . .

w ∅ w

and then by induction hypothesis on σ[v] = v′.

• Case σ[injr v] = injr v
′ is similar.

• Case σ[〈v1, v2〉] = 〈v′1, v′2〉
Lv′1M Lv′2M

Lv1M† Lv2M†

......

LeM

... ...

≡
Lv′1M
...

Lv′2M
...

Lv1M† Lv2M†

LeM

... ...
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then by induction hypothesis on σ1[v1] = v′1 and σ2[v2] = v′2. This holds due to
the fact that the support of σ1 and σ2 are disjoint, as imposed by the definition of
σ[〈v1, v2〉] = 〈v′1, v′2〉.

As with µMALL, we consider the explicit substitution reduction defined as in Chapter 4.
As with Proof Net and the lambda-calculus with explicit substitution, two terms that
reduce with explicit substitution give rise to exactly the same diagram. The only special
case is the one of the decomposition of a let term into two:

Lemma 6.9.12. Given a well typed term

ξ1

∆ ` t : A such as t →elet t
′ and

ξ2

∆ ` t′ : A
then the interpretation of the two terms are the same: Lξ1M = Lξ2M.

Proof. By induction on →elet:

• u1 = let 〈x, p〉 = 〈t1, t2〉 in t3 →elet letx = t1 in let p = t2 in t3 = u2

Then

Lt1M Lt2M

...
...

... ...

Lt3M

∆3

∆1 ∆2

... ...

Lt3M

∆3

Lt2M
...
∆2

Lt1M
...
∆1

≡

• All the other case are direct as the translation of both ξ1 and ξ2 gives exactly the
same diagrams.

Lemma 6.9.13 (Evaluation of an iso). Given `ω {v1 ↔ e1 | · · · | vn ↔ en} : A ↔ B
and ∆ `e v : A and v′ : B such that ω v → σ(ej) with σ[vj ] = v then Lω vM = Lσ(ej)M.

Proof.

A

c

Lξ′1M Lξ′nM

c

Lξ1M† LξnM†...

B

......

LvM
...∆

≡

c

Lξ′1M Lξ′nM
Lξ1M† LξnM†...

B

......

LvM

...

LvM

...

∆

≡

c c
...

LejM
LvjM†...

LvM
...∆

≡
...∆

Lletσ in ejM
...∆

Lσ(ej)M≡

Where:
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• The first equation is due to the naturality of the contraction.

• The second equality is due to Lemma 6.9.10 and by the first axiom of Figure 6.5 for
removing the left-over unary contraction and co-contraction from Lemma 6.9.10.

• The third equation is due to Lemma 6.9.11.

• The fourth equation is due to Property 6.9.3.

.

Theorem 6.9.14 (Soundness). Given two well-typed terms t1, t2, if t1 → t2 then their
interpretation is the same: Lt1M = Lt2M.

Proof. By direct application of Lemma 6.9.13, Lemma 6.9.12 and Property 6.9.4 and
Property 6.9.3.

We could also define an operational equivalence between terms and show adequacy, but
this is left as future work.

6.10. Conclusion

We introduced a new graphical language with a token-based semantics, along with a
worlds labelling system and an equational theory.

This language is a first step towards the unification of languages based on the tensor
⊗ and those based on the biproduct ⊕. This allows us to reason about both systems
in parallel, and superposition of executions, as shown by the encoding of the Quantum
Switch in Example 6.7.5 and the translation from term of the language in Section 6.9.

Following this translation, a natural development of the Many-Worlds calculus consists
in accommodating recursion in the language. The question of a complete equational
theory for the language on mixed states (e.g. via the discard construction [Car+19])
is also left open. With recursion, one would be able to encode the whole language
of [SVV18]. As mentioned in Chapter 4, the language of [SVV18] only have the type
of lists as recursive data-type and is very restrictive in the way recursion is handled.
Extending the language of Chapter 4 to the quantum case would be more befitting.

Finally, while our language allows for quantum control, it does not entirely capture an-
other language that aims at formalizing quantum control, namely the PBS-Calculus [CP20].
How and in which context could we capture the PBS-Calculus is left for future work.
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Conclusion

Summary. In this thesis, we studied the question of reversible and quantum control
along with pure quantum types and its Curry-Howard correspondence. We gave a first
linear and reversible programming language with a typing system based on the logic
µMALL. The language is expressive enough to represent any primitive recursive function
and comes with its Curry-Howard correspondence with the logic µMALL.

We then looked at token-based semantics for quantum graphical languages, first in the
case of the ZX-Calculus, which gave us strong intuition on how to adapt it for a new
graphical language featuring both a pairing and branching: the Many-Worlds Calculus.
We showed how the Many-Worlds can be used to represent pure quantum computation
with quantum tests, by encoding both a pure quantum programming language and the
quantum switch.

Future Work. The iso language and the Many-Worlds are strongly linked by linear
logic. While the iso-language features recursion and inductive types but no quantum
computation, the Many-Worlds-Calculus features quantum computation but no recur-
sion and inductive types. A clear extension is then to extend the language of Chapter 4
to the quantum version, as done in [SVV18], while on the other hand the Many-Worlds
could be extended in order to handle recursive types and recursion. Then, the Many-
Worlds-Calculus would serve as a direct denotational model of the language, as shown
in Section 6.9. Then could come the question of coinductive types. In [CDVP21], the
authors explore a variant of the ZX-Calculus with delayed traces, allowing to consider
streams of qubits to flow in the diagram indefinitely, while in [DS19], the authors ex-
plore proof nets for µMALL. Those two approaches could be used for the extension of
the Many-Worlds-Calculus to the case of inductive and coinductive types.

The Many-Worlds Calculus could also serve as a denotational model for other similar
logic or programming language with effects, as [DD22]. A collaboration is currently
planned on this subject.

As the Many-Worlds-Calculus is parametrized by a commutative semiring, it is not, in
essence, necessary quantum. It could therefore also be used to represent any kind of
algebraic branching, be it non-deterministic or probabilistic. On this note, seeing how
the Many-Worlds-Calculus adapt to probabilistic programming and their denotational
semantics could be interesting.
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