
The Tensor-Plus Calculus
ANONYMOUS

Abstract—We propose a graphical language that accommo-
dates two monoidal structures: a multiplicative one for pairing
and an additional one for branching. In this colored PROP,
whether wires in parallel are linked through the multiplicative
structure or the additive structure is implicit and determined
contextually rather than explicitly through tapes, world annota-
tions, or other techniques, as is usually the case in the literature.
The diagrams are used as parameter elements of a commutative
semiring, whose choice is determined by the kind of computation
we want to model, such as non-deterministic, probabilistic, or
quantum.

Given such a semiring, we provide a categorical semantics of
diagrams and show the language as universal for it. We also
provide an equational theory to identify diagrams that share the
same semantics and show that the theory is sound and complete
and captures semantical equivalence.

In categorical terms, we design an internal language for semi-
additive categories (C,+,0) with a symmetric monoidal structure
(C,x,1) distributive over it, and such that the homset C(1,1) is
isomorphic to a given commutative semiring, e.g., the semiring
of non-negative real numbers for the probabilistic case.

I. INTRODUCTION

From a computational perspective, the low-level control
flow of a program is inherently linked to the information it
acts upon. Besides composition, two program manipulations
can be considered native: juxtaposition and branching.

The juxtaposition of programs can happen when they op-
erate on distinct areas of the memory: a function f acting
on A can be executed in parallel to a function g acting
on B as long as they do not interact. Such operations can
run asynchronously—they can be juxtaposed. The categorical
interpretation of such an operation is a monoidal structure: the
joint system of A and B is written A B,1 and the combined
action of f and g is f g. The operation is said multiplicative:
A B represents pairs of elements of A and B.

These multiplicative monoidal structures can be equipped
with a natural graphical interpretation (a PROP): types are
represented as wires and actions as boxes. The system’s action
f g on the type A B can be represented graphically as
shown in Figure 1a. For this multiplicative construction, in
the interpretation discussed above, the wire A B is intuitively
understood as a bundle of two wires of type A and B: the two
boxes represent the split and merge of these two bundled
wires.

The other arguably native operation is branching: the pos-
sibility to choose a course of action based on the state of
the memory. This choice operation becomes the if-then-else
for Boolean values and the case distinction for more general

1The combinator is usually written ⊗. We chose to modify its represen-
tation to make the distinction with ⊕ clearer, which is especially beneficial
for the upcoming generators of the graphical language.

A B��
A B

f

A′ ,,

g

B′rr
A′ B′
��

(a) Multiplicative

A⊕B��
⊕A B

f

A′ ,,

g

B′rr⊕
A′⊕B′
��

(b) Additive

A B��
A B

A '' Bww⊕
A⊕B
��

(c) Incompatibility

Fig. 1: typical graphical structure

data structures. From a categorical standpoint, the choice is
typically modeled using a coproduct or a byproduct ⊕. A
Boolean value lives in 1⊕1: it is either the left injection (say,
False) or the right injection (say, True). In general, the type
A ⊕ B stands for either something of type A or something
of type B. The additive monoidal structure is graphically
similar to the multiplicative one, shown in Figure 1b. The
main difference lies in the interpretation of the wire of type
A ⊕ B: something of type A or type B will get in, and this
piece of data will be routed to the correct wire A or B upon
reaching the first split-node ⊕. The merge-node ⊕ will then
secure the result again in the wire A′ ⊕B′.

These multiplicative and additive structures are pervasive
in all models of computation. They serve as a baseline
for the multiplicative, additive fragment of linear logic [1],
[2]. Dozens of categories feature these structures: relational
models [3], [4], [5], [6], coherent spaces [7], vectorial models
such as modules or vector spaces [8], [9], etc.

Despite this ubiquity, it is notoriously difficult to de-
fine a graphical language that handles both a multiplicative,
monoidal structure and an additive structure, whether coprod-
uct or byproduct. The main difficulty lies in keeping track of
how wires are related: if the language is purely multiplicative,
all wires are tensored; if the language is purely additive, all
wires are in sum. However, if the language features both tensor
and sum, three wires of type A, B, and C are ambiguous:
they could, for instance, be seen as A (B ⊕ C), but also as
the (incompatible) (A B)⊕ C or even A⊕ (B C). In the
literature, this has been approached with the addition of ex-
ternal information on the graph representing the computation:
worlds [10], sheets [11] or tapes [12]. Considering our three
wires of types A, B, and C, additional information is added
to know how to relate them: for instance, whether A and B
should first be tensored before summing C.

Multiplicative and additive structures canonically support
algebraic effects. Relational models can be weighted with
non-deterministic [13] or probabilistic effects [4], and finite-

dimensional vector spaces is a model for (pure) quantum
computation [14]. In this realm, the “choice” operation be-
comes effectful, and wires carry a weight: a probability, a
complex number representing a quantum coefficient, etc. Such
effectful computations take an additional toll on the design of
a graphical language: one has to handle the multiplicative and
additive aspects and the actions of the algebraic effects.

This paper is devoted to studying such a setting: We pro-
pose a graphical language unifying multiplicative and additive
actions, supporting probabilistic, non-deterministic, and more
exotic effects such as purely quantum effects. Contrary to
the above-mentioned worlds, sheets, or tapes, the handling of
wires does not require any additional structure.

A. Strategy followed in the paper.

The main difficulty consists in giving a sense to the juxta-
position of two wires: it cannot simply be a tensor or a sum;
it needs to be able to be both and in a homogeneous manner.

Our proposal, therefore, defines a special monoidal structure
capturing these two possibilities at once. Formally, we set our-
selves in the context of a symmetric monoidal category (rep-
resenting the multiplicative tensor) with an additive structure:
the additive structure gives a biproduct, and when enriched
this framework is expressive enough to represent the algebraic
effects we care about. Wire juxtaposition is then represented
with a sum of either a tensor or a sum: (A B)⊕ (A⊕B). If
this is defined formally in Section III, let us simply mention
here that this binary operation gives a well-defined monoidal
structure and a PROP: we provide in the paper a graphical
language for which this category is the target model.

Moreover, because these two wires might be used inconsis-
tently, for instance, the diagram shown in Figure 1c: we need
to be able to represent a notion of “error” state. We capitalize
on the additive structure (and the enrichment) and represent it
with the “zero” map inherited from the additive structure of
the category.

B. Contributions and plan of the paper.

Formally, the contributions of the paper are as follows.
• A graphical language: the Tensor-Plus Calculus, unifying

multiplicative and additive structures and capturing alge-
braic effects: non-determinism, probability, vectorial (and
quantum). The language is described using the notion of
PROP, and comes in two variants: TPR and FTPR, with
R a given commutative semiring.

• An interpretation based on symmetric, monoidal, semi-
additive categories, with a universality result for both
(Theorem III.2);

• An equational theory allowing us to rewrite diagrams,
proven sound and complete (Proposition IV.1 and Theo-
rem IV.2). We write TPR

≡ and FTPR
≡ for the categories

TPR and FTPR quotiented by the corresponding equiva-
lence (rewriting) relation. From the completeness result,
we show that the Tensor-Plus Calculus can be regarded
as an internal language for the corresponding category
(Theorem IV.8).

The plan of the paper is as follows. We present the language
and several examples in Section II. We then define the cat-
egorical semantics of our language and show its universality
in Section III. Section IV is devoted to presenting a sound
and complete equational theory. We then discuss extensions
of these results

II. THE TENSOR-PLUS CALCULUS

The aim of the paper is to define a graphical language that
allows both for pairing and branching of data. In the latter
case, the two branches may not be used at the same time
(we use either one branch or the other, or none), while in the
pairing case, the two pieces of data are either used together,
or are both not used. We want all these possible interactions
between wires to remain implicit, and not resort to explicit
additional cues, like sheets, tapes, annotations, etc. Moreover,
we want to be able to account for algebraic effects such as
non-deterministic, probabilistic, and quantum effects (or, more
generally, vectorial effects).

The language we propose, called the Tensor-Plus Calculus
is parameterized by a commutative semiring (R,+, 0,×, 1)
to account for the kind of algebraic effects we target. It can
be instantiated by the complex numbers (C,+, 0,×, 1) to
represent pure quantum computations, the non-negative real
numbers (R≥0,+, 0,×, 1) for probabilistic computations, or
the Boolean values ({0, 1},∨, 0,∧, 1) for non-deterministic
computations. We come back to these semirings in Sec-
tion II-C.

We define the Tensor-Plus Calculus within the paradigm of
colored PROP [15], [16]: A morphism is a diagram composed
of nodes, called generators, linked to each other through
colored wires—where each color corresponds to a datatype
such as “bit”—that are allowed to cross each other. This graph-
ical representation allows the rewriting equations provided in
Figure 2, where f and g stand for any diagrams with any
numbers of inputs and outputs, and the wires could be of any
colors.

The Tensor-Plus Calculus is equipped with a denotational
semantics (Section III) and an equational theory (Section IV).
In this section, we only focus on the syntax and the intuition
through a series of examples.

A. The Wires: the Objects of our Category

In a colored PROP, the set of objects is freely generated
by a set of colors and a strict2 monoidal product ∥ with ∅
as neutral element. In other words, an object corresponds to
a collection of wires in parallel, written A1 ∥ · · · ∥ An, each
wire being “typed” by a color Ai. We use calligraphic letters
X ,Y, . . . to denote the objects of our colored PROP, and non-
calligraphic letters A,B, . . . for colors. The goal is for the
colors to represent datatypes such as “bit”, so the colors will
themselves be generated by the syntax

A,B ::= 0 | 1 | (A⊕B) | (A B),

2So ∥ is strictly associative and ∅ is strictly its neutral element.

=

. . .

. . .

d e
. . .

. . .

=

. . .

. . .

e d
. . .

.

. . .
d

e
. . .

. . .

. . .

. . .

d e

. . .

. . .

=

. . .

. . .

d

e

. . .

. . .

=

Fig. 2: Equations of a colored PROP. These are supposed true for any colors on the wires.

where ⊕ is used to build sum types such as “bit = 1⊕1”, and
is used to build pairs. The symbol 0 represents the unit of

the sum ⊕ while 1 is the unit of the tensor . For example,

((A⊕B)⊕ 0) ∥ 1 ∥ (A 0)

is an object composed of three colors: (A ⊕ B) ⊕ 0, 1 and
A 0. We can then represent them as three wires in parallel:

(A⊕B)⊕ 0 1 A 0

Note that while the monoidal product ∥ is strictly associative,
we do not consider ⊕ and to be associative as they are purely
syntactical. We instead have an equivalence relation ≈λρα on
colors, generated by the rules:

A⊕ 0 ≈λρα A, A 1 ≈λρα A,

0⊕A ≈λρα A, 1 A ≈λρα A,

for the units,

(A⊕B)⊕ C ≈λρα A⊕ (B ⊕ C),

(A B) C ≈λρα A (B C),

for the associativity of the binary operators, and

A⊕ C ≈λρα B ⊕ C, A C ≈λρα B C,

C ⊕A ≈λρα C ⊕B, C A ≈λρα C B,

whenever A ≈λρα B, for the congruence rules.
The choice of the notation ∥ for wires in parallel is un-

common: the notation ⊗ is often preferred in the literature.
We use it to put an emphasis on the fact that contrary
to languages such as proof-nets [2], Boolean (or quantum)
circuits, or the ZX-calculus [17], wires that are in parallel are
not necessarily “in tensor with one another”. In fact, A ∥ B
can be understood semantically as “either A B or A ⊕ B”.
This intepretation is formalized in the categorical semantics in
Section Section III-A, and it will be the underlying meaning
of the equation (mix) of Figure 7.

B. The Diagrams: the Morphisms of our Category

The generators of our language are described in Figure 3.
On the top line, one can respectively find: the Identity idA :
A → A, the Swap σA,B : A ∥ B → B ∥ A, the Tensor
A,B : A ∥ B → (A B), the Plus ⊕A,B : A ∥ B → (A⊕B),

the Contraction A : A ∥ A → A, the Null zeroA : ∅ → A
(represented with a triangle pointing down), the Unit 1 :
∅ → 1. On the bottom line, one can read the Adapter A,A′ :

A → A′ (whenever A ≈λρα A′), the Scalar [s]A : A → A
for s ranging over the commutative semiring R, and the up-
down mirrored version of all of the generators3. We write fT

for the up-down mirrored version of f . Diagrams are read
top-to-bottom: the top-most wires are the input wires and the
bottom-most wires are the output wires.

Not Functional
A

A

A B

B A

A B

A B

A B

A⊕B A

A A

A 1

A

A′

s

A

A A B

A B

A B

A⊕B A

A A

A 1

Fig. 3: Generators of our Language (A ≈λρα A′, s ∈ R)

These generators encompass at once:
• the PROP structure of the Tensor-Plus Calculus (with the

Identity and the Swap);
• the multiplicative, tensor structure (with the Tensor, the

Unit and their duals);
• the additive, biproduct structure (with the Plus, the Con-

traction and their duals);
• the scalars (with the Scalar generator).

The associativity and unit of the multiplicative and additive
structures is given by the Adapter (representing the equiva-
lence ≈λρα).

Equationally, the language as it stands does not contain more
than the equational theory of PROP. In particular, with respect
to the Sum, the Contraction corresponds to the codiagonal and
its dual to the diagonal morphism: this is not yet enforced.
In Section III we present a categorical semantics formally
describing this intuition, and Section IV equips the Tensor-
Plus Calculus with an equivalence relation ≡ capturing the
structure of the denotational semantics.

Diagrams are obtained by composing the generators (Fig-
ure 3) in parallel (written ∥), or sequentially (written ◦), as
follows:

e ◦ d :=

...

...

...
e

d
d ∥ e :=

...

...
d

...

...
e

3The Identity, the Swap, the Adapter and the Scalar are their own mirrored
version.

Sequential composition requires the color (and number) of
wires to match. We write TPR for the PROP category of such
diagrams (with the equality given by the equational theory
of PROP), and TPR(X ,Y) for the set of diagrams that are
morphisms from X to Y .

The goal we announced in the introduction was to create
an internal language for semiadditive categories with some
additional properties. As such, one would expect ∅ to be a
terminal and initial object of our category, and might question
the existence of the Unit as a non-trivial morphism from
∅ to 1. The Unit and its mirrored version are considered
“non-functional”. Computationally, they allow the process to
start generating non-zero outputs without having received any
input. More generally, while useful for practical examples and
when representing “values” (true, false) instead of “functions”
(negation, etc), they come with some significant technical
complexities, and they muddy the categorical properties of our
language. As such, we define the sub-language of Functional
Tensor-Plus Calculus as the same but without the Unit and
its mirrored version. We write FTPR for the corresponding
category.

C. Examples

To illustrate the expressive power of our diagrams, we give
one example for each of the commutative semirings that were
announced at the beginning of the section.

Example II.1. We consider R to be the boolean ring, and
look at the type 1⊕1. There are four different values over this
type: True, False, ⊥ (or Failure), ⊤ (or the Nondeterministic
superposition of True and False). One can represent them as

1⊕ 1 1⊕ 1 1⊕ 1 1⊕ 1

We can define several versions of the logical OR: (1⊕1) ∥
(1⊕1) → 1⊕1, respectively the strict OR, the lazy OR, and
the parallel OR:

All these versions of the OR produce the same output when
they receive well-defined Boolean inputs. Let us give some
intuition to better understand those pictures:

• The left branch of a Plus corresponds to False, while its
right branch corresponds to True.

• The Contractions should be seen as rail-switches where
data must go left or right and cannot do both.

• The Tensor should be thought of as grouping data to-
gether.

• The Adapter can be ignored, its effect is purely adminis-
trative.

In all three diagrams, the right branches of the input Pluses are
connected in many different ways to the right branch of the
output Plus, and never to the left branch. As such, as soon as
one input is True, the output cannot be False. The other way
around, the left branch of the output Plus is only connected
to the left branches of the input Pluses, so for the output to
be False, both inputs must be False.

These three versions of the OR differ in the way they deal
with failing inputs – represented by the Null zero1⊕1. The
strict OR expects a well-defined Boolean value for both its
inputs and will return Null if any of its two input is Null,
while the lazy OR can “short-circuit” the computation if the
first input turns out to be True – in that case, we don’t care
about the second input, and directly output True even if that
second output would be Null. The parallel OR symmetrizes the
lazy OR, and produces True whenever one of the two inputs
is True.

These behaviors are completely captured by the upcoming
equational theory, and examples of how it can be used to verify
said behaviors are provided in Section IV.

Example II.2. When considering R = R≥0, we can encode
some basic probabilistic primitives in it and show how they
operate. The most basic data we can represent is a probabilistic

bit (pbit), seen as a vector
(
p
q

)
where p is the probability

of False and q the probability of True – we do not enforce
q = 1− p here, although it is required for this to be an actual
pbit.

In TPR, the Boolean values are represented by the type
1 ⊕ 1. The above pbit is then represented by the following
diagram:

(
p
q

)
⇝

p q

1⊕ 1

∈ TPR≥0(∅,1⊕ 1)

A program manipulating pbits can be understood as a non-
negative-valued (usually stochastic) matrix. For example, the

matrix
(
1 1/2
0 1/2

)
corresponds to the program “if x then coin()

else False”. This operation can be represented as follows:

(
1 1/2
0 1/2

)
⇝

1⊕ 1

1/2 1/2

1⊕ 1

∈ TPR≥0(1⊕ 1,1⊕ 1)

In that figure, the top-most ⊕ allows us to “open a vector”
(the input) to recover its corresponding scalars, the contrac-
tions allow us to duplicate and sum scalars. Finally, the
bottom-most ⊕ will build a new vector from two scalars.

For example, one can look at the composition of the above
matrix and vector. Using the upcoming equational theory
(Section IV), we can rewrite the composite diagram into a
simpler diagram (done in Example IV.5):

1/2 1/2

1⊕ 1

p q

≡
p + q

2 q/2

1⊕ 1

and this resulting diagram indeed corresponds to the result of

the matrix product
(
p+ q

2
q/2

)
.

Example II.3. We consider R = C. The situation here
is very similar to the probabilistic case, as our diagrams
represent matrices. The main difference is that instead of
expecting probabilistic bits to satisfy p + q = 1, we expect
the quantum bits to satisfy |p|2+ |q|2 = 1, where p, q are now
complex numbers. The presence of negative numbers means
that interference is now a possibility: multiple executions of
the programs can cancel each other. For example, applying

the Hadamard unitary
(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)
to
(
1/
√
2

1/
√
2

)
returns

False, because the two executions outputting True cancel each
other. This interference will also be visible in the upcoming
equational theory, where two opposite scalars will cancel each
others with Equation (R+).

D. The Compact Closure

While we do not have a Cup and a Cap as generators in
order to “bend” wires, we can define them inductively as
follows:

:=

A B

A B
:=

A B

A⊕B

:=
1 1 1

:=
0 0 0

Since they rely on Unit, they are not part of FTPR. As proved
in Proposition D.12, the equational theory ensures that they
satisfy the snake equations. In other words, TPR

≡ is compact
closed. Those bent wires can be used to represent relatively
advanced control flows and higher order programs, as shown
in the example below.

Example II.4. We take inspiration from the literature of
quantum computation and study the “(quantum) switch” [18],
[19], [20]. Note that despite being quantum-inspired, this
example works for any commutative semiring R. It comes
from a physical protocol allowing physicists to apply two
operators U and V in an indefinite causal order, that is either

U ◦ V or V ◦ U , while relying on only one physical instance
of U and one physical instance of V [21].

As such, representing it in our language is an interesting
case study of both “higher order” protocols, as U and V
are inputs of the programs, and of advanced control flow,
as it is indefinite whether U is executed first or second. We
temporarily set aside the “higher order” part, and focus on
the latter. That is, we start by implementing switchU,V :
(1 ⊕ 1) A → (1 ⊕ 1) A, assuming two given diagrams
for U,V : A → A. The expected operational behavior is the
following:

switchU,V b a = if b then (b, VUa)

else (b, UVa)

In TPR, we can easily represent the switchU,V using two
instances of U and V , it is the left side of Figure 4. The
diagram is a simple branch-out depending on the value of b,
where we either apply U ◦ V or V ◦ U . Finding a graphical
representation using only on instance of U and V is harder –
and in fact impossible in some graphical languages [18] – but
still doable in our language, see the middle of Figure 4.

From this diagram with only a single instance of U and
V , we can easily extract those out of the diagram by bending
wires. This yields the diagram at the right of Figure 4, which
represents

switch : (1⊕ 1) A ∥ (A ∥ A) ∥ (A ∥ A) → (1⊕ 1) A

where the first (A ∥ A) expects U as an input and the second
(A ∥ A) expects V .

Now that the expressive power of the graphical language is
well illustrated, let’s provide diagrams with a formal meaning.

III. CATEGORICAL SEMANTICS

We provide a semantics based on category theory, although
this semantics could also be stated in terms of matrices
instead4. For example, in the case where the scalars of R are
complex numbers, this is simply a semantics toward matrices
with complex coefficients, so toward (FdHilb,⊕, {0},⊗,C)
where FdHilb is the category of finite dimensional Hilbert
spaces, ⊕ is the direct sum (also called Cartesian product), {0}
is the trivial Hilbert space, ⊗ is the tensor product (also called
Kronecker product), and C is the field of complex numbers.
The categorical framework used here can be deduced from
three structures:

• a semiadditive5 category (H,⊕, 0)
• a symmetric monoidal structure (H, ,1) that is distribu-

tive over the semiadditive structure.
• a semiring isomorphism scal : R → H(1,1).

As those notions are relatively standard, in the core of the
paper, we simply present the parts that are of interest for
the categorical semantics. We still provide the full definitions
in the appendix (Section B), together with proofs of the
properties we rely on.

4We provide such a matrix-based semantics in Figures 20 and 21.
5Semiadditive categories are also called “categories with finite biproducts”.

U VU

V

(1⊕ 1) A (1⊕ 1) A

(1⊕ 1) A (1⊕ 1) A

(1⊕ 1) A

(1⊕ 1) A

A

U

V

A A A

Fig. 4: The diagrams for switchU,V with duplicates, switchU,V with single instances, and switch respectively.

A. The Categorical Framework

Let H be a category verifying the above three items. H
is enriched over R-semimodules, in other words given two
morphisms f, g : H → K and two scalars s, t ∈ R we
can build the weighted sum s · f + t · g by relying on the
isomorphism scal. In particular, whenever R = R≥0, this can
be used to represent probabilistic distribution morphisms. We
write zero : H → K for the null morphism, which is the unit
of that sum.

Additionally, H comes with three different symmetric
monoidal structures, representing the "pairing" or data,
⊕ representing the "superposition" of multiple potential out-
comes, and | informally representing "either or ⊕" and more
formally defined as:

H | K = (H K)⊕ (H ⊕K)

Those operations are bifunctorial. So for f : H → K and
f ′ : H ′ → K ′, we have:

f f ′ : H H ′ → K K ′

f ⊕ f ′ : H ⊕H ′ → K ⊕K ′

f | f ′ : H | H ′ → K | K ′

Those operations are, up to isomorphism, associative and
respectively have 1, 0 and 0 as units. We denote by m all the
isomorphisms obtained from the associators and unitors of
by composing them with ◦, , ⊕ and |. While this notation is
ambiguous, Mac Lane’s coherence theorem (Theorem B.4 and
[22], [23]) ensures that this ambiguity is never problematic. We
define m⊕ and m| similarly.

Those operations are also symmetric, meaning that we have

σ : H K → K H
σ⊕ : H ⊕K → K ⊕H
σ| : H | K → K | H

Lastly, ⊕ is a biproduct, meaning that we have injections
ι, projections π, and diagonals ∆ = ιℓ+ιr and codiagonals

∇ = πℓ+πr:

πℓ : H ⊕K → H ιℓ : H → H ⊕K
πr : H ⊕K → K ιr : K → H ⊕K
∇ : H ⊕H → H ∆ : H → H ⊕H

B. Additional Structures for Non Functional Morphisms

By virtue of (H,⊕, 0) being a semiadditive category, 0

is an initial object. Said otherwise, for any object H , the
only morphism 0 → H is zero. This actually matches the
functional fragment of our language, as the only generator
with no input is the Null. However, in the full language, the
Unit is a generator with no input that is distinct from the Null.
In order to represent that unit, we need to go slightly beyond
H.

Definition III.1. We define H⊕1 as the category with the
same objects as H and for morphisms f ∈ H⊕1(H,K), the
morphisms of H(H ⊕ 1,K ⊕ 1) of the form

f = g + (ιr ◦ πr)

for some g ∈ H(H⊕1,K⊕1). In matrix terms, it is a matrix
of H(H ⊕ 1,K ⊕ 1) where the bottom-right coefficient is of
the form c+id for c ∈ H(1,1). The identity and composition
are the same as in H.

The restriction to morphisms of the shape g+(ιr ◦ πr) is
irrelevant if we have access to negative numbers, that is if
our semiring R is actually a ring. However, in absence of
negative numbers, Tensor-Plus Calculus has no diagram that
actually behaves like the zero morphism6, meaning that we
need to exclude the zero morphism from H⊕1 in order to get
universality.

In order to utilize this category, we rely on the following
natural isomorphims:

expand : (H ⊕ 1) (K ⊕ 1) → (H | K)⊕ 1

which follow from the distributivity of over ⊕.

6For example, the empty diagram has for semantics that identity of H(1, 1),
so to obtain zero one would need to be "less" than empty.

tA

A

|

:= id : JAK → JAK

tA B

B A

|

:= σ| : JAK | JBK → JBK | JAK

t

s

A

A

|

:= s · id : JAK → JAK

u

v
A B

A⊕B

}

~ := πr : JAK | JBK → JAK ⊕ JBK

u

v

A B

A⊕B
}

~ := ιr : JAK ⊕ JBK → JAK | JBK

u

v
A B

A B

}

~ := πℓ : JAK | JBK → JAK JBK

u

v

A B

A B
}

~ := ιℓ : JAK JBK → JAK | JBK

t

A

A A|

:= ∇ ◦ πr : JAK | JAK → JAK

t A

A A

|

:= ιr ◦∆ : JAK → JAK | JAK

t

A

|

:= zero : 0 → JAK

tA|

:= zero : JAK → 0

u

v
A

A′

}

~ := JA ≈λρα A′K : JAK → JA′K

Je ◦ dK := JeK ◦ JdK Jd ∥ eK := m| ◦ (JdK | JeK) ◦m|

Fig. 5: Categorical Semantics for the Functional Tensor-Plus Calculus

JdK⊕1 := JdK ⊕ id1 whenever d ∈ FTPR

t

1

|⊕1

:= ∆ ◦m⊕ ∈ H⊕1(0,1)

t 1|⊕1

:= m⊕ ◦ ∇ ∈ H⊕1(1, 0)

Je ◦ dK⊕1 := JeK⊕1 ◦ JdK⊕1 Jd ∥ eK⊕1 := (m| ⊕ id1) ◦ expand ◦ (JdK⊕1 JeK⊕1) ◦ expand−1 ◦ (m| ⊕ id1)

Fig. 6: Categorical Semantics for the Tensor-Plus Calculus

C. The Semantics

We assume that we have (H,⊕, 0, ,1, scal) as described
above. For any color A of TPR (or FTPR), we can give its
semantics JAK in H as follows:

JA⊕BK := JAK ⊕ JBK J0K := 0

JA BK := JAK JBK J1K := 1

We can then extend this semantics to objects as follows:

JX ∥ BK := JX K | JBK
= (JX K JBK)⊕ (JX K ⊕ JBK) J∅K := 0

In order to give a semantics to every diagram, we will
start by defining a semantics for the functional fragment
J_K : d ∈ FTPR(X ,Y) 7→ JdK ∈ H(JX K , JYK) and then we
generalize it to the whole calculus at the cost of a slightly
different target category J_K⊕1 : d ∈ TPR(X ,Y) 7→ JdK⊕1 ∈
H⊕1(JX K , JYK).

The semantics for the functional fragment is given in
Figure 5, where m| denote the unique morphisms given by
Mac Lane’s coherence theorem7 on (H, |, 0) that apply the
sequence of associators for | required for the definition to

7See [22], [23], or Theorem B.4 from the appendices, using the fact that |
is a monoidal product as proven in Proposition B.20 in the appendices.

typecheck, and where JA ≈λρα A′K is the unique morphism
given by our generalization of Mac Lane’s coherence theorem
to categories with two monoidal structures (see Definition B.18
in the appendices) that applies the sequence of associators for

and ⊕, unitors for and ⊕ and their inverses required
to obtain a morphism from JAK to JA′K. In the semantics,
remember that A | B stands for (A B)⊕ (A⊕B), therefore
the morphisms πr, πl, ιl, ιr act on this type and, for example,
we can have πr : A | B → A ⊕ B and πℓ : A | B → A B.
This semantics is universal:

Theorem III.2 (Universality). For every object X ,Y , for all
f ∈ H(JX K , JYK), there exists a diagram d ∈ FTPR(X ,Y)
such that JdK = f .

Then, the semantics for the whole calculus is given in
Figure 6. For readers preferring matrix notation instead of
categorical notations, we provide an equivalent semantics
using matrices in the appendices, Figures 20 and 21. The
universality result also holds in the general case, with H⊕1

instead of H, although we remind the reader that the definition
of H⊕1 explicitly excludes morphisms such as zero when R
has no negative element.

IV. THE EQUATIONAL THEORY

A. The Functional Case

The equivalence relation ≡ is generated by the non-
bracketed equations in Figures 7 to 11, which include the
up-down mirrored version of each equation. The bracketed
equations can be deduced from the non-bracketed ones (see
Section D) but are left for convenience. The name of those
deduced equations also use square brackets, unless they are
simply the left-right mirror of an existing axioms in which
case we keep the same name. The most important equations
are found in Figure 7:

• (), (⊕) and (⊥) show that the Tensor and the Plus act as
projections/injections, where plugging one to its mirrored
version gives the identity while plugging one to the other
gives the Null.

• (0) shows that the color 0 is useless as no data can travel
through wires of that color.

• (σ) shows that the Contraction is a (co-)commutative
operation.

• (N) means that Tensors have no computational effect
on the state, other than enforcing that either both inputs
are used at the same time, or they are both not used

• (X⊕) means that two Pluses head-to-head have no com-
putational effect on the tokens other than enforcing that
at most one input is used.

• (⊕ →) shows that the Contraction and the Plus have
very similar behaviors.

• (mix) means that A ∥ B is “either A B or A⊕B”.
Then:

• The equations provided in Figures 8 and 9 describe how
both the Null and the Contraction can commute with most
other constructors.

• The equations in Figure 10 explain how the definition of
≈λρα is expressed in the equational theory.

• The equations in Figure 11 explain how the semiring
(R,+, 0,×, 1) is expressed in the equational theory.

Lastly, Figure 13 are a collection of various other equations
that can be deduced from the others, included for convenience.
Only [X⊕→] and [X →] rely on the Unit, so all the
others are in FTPR.

All these equations were obviously chosen so that their
application does not change the semantics of the diagrams:

Proposition IV.1 (Soundness). For d, e ∈ FTPR(X ,Y), if
d ≡ e then JdK = JeK.

The proof consists in checking that each individual equation
is sound with respect to the categorical semantics, which is
done in details in Section C.

Soundness tells us that the equational theory captures part
of the semantics associated to the graphical language. We
can go one step beyond and show that it captures exactly the
semantics, i.e. the converse of soundness:

Theorem IV.2 (Completeness). For d, e ∈ FTPR(X ,Y), if
JdK = JeK then d ≡ e.

This is proven through a normal form. We refer to Theo-
rem E.15 in the appendix for the proof that every morphism
can be put in normal form, and to Corollary F.2 for the proof
that if two morphisms share the same semantics, then they
share the same normal form.

B. The General Case

When defining the equational theory for TPR, we simply
take the equational theory for FTPR and add the few equations
of Figure 12, proven sound in Section C. The last equation,
(Can), will be irrelevant as soon as R is cancellative, as it
follows that s = t whenever s+1 = t+1. We write TPR

≡ for
TPR quotiented by ≡.

Quite importantly, we can use ≡ for both equational theories
without ambiguity:

Proposition IV.3. For d, e ∈ FTPR(X ,Y), d ≡ e for the
equational theory of FTPR if and only if d ≡ e for the
equational theory of TPR.

Proof. The direct implication follows from the fact that we
only added equations. The indirect implication follows from
the fact that the semantics of TPR is conservative with respect
to the semantics of FTPR, hence it will not equate morphisms
that had distinct semantics as morphisms of FTPR. Since the
equational theory of FTPR is complete, it means the additional
equations do not equate morphisms that are distinct within
FTPR

≡.

Note that outside of those equations, the Unit generator is
ill-behaved, and in particular assuming a non-trivial R we have
the following inequations8:

̸≡

̸≡1

1 1 1 1

̸≡

1

1 1

1

1 1

̸≡

This behavior is actually in line with our semantics, as the
completeness result also extends, as proved in Theorem E.17
and corollary F.4 using a slight generalization of the previous
normal form.

Therefore, soundness (Proposition IV.1) and completeness
(Theorem IV.2) extend in this setting.

C. Back to the Examples

In this section, we revisit earlier examples in order to
illustrate the equational theory.

Example IV.4. We start by revisiting Example II.1. In fact,
the functional part of the calculus is enough already to express

8More precisely, the first and last inequations require that R satisfies 1+1 ̸=
1, and the other two require the even weaker property 1 ̸= 0.

A B

≡

A B

()

A BA B

A ⊕ B

≡

A ⊕ B

(⊕)

A ⊕ BA ⊕ B

A B

≡
(⊥)

A ⊕ B

A B

A ⊕ B

A B

A B

A B

A B

≡
(mix)

A B

A B C

C

≡
(N)

A B C

A B C

≡
(X⊕)

A B C D

A B C D

A B C D

A B C D

≡
(⊕→)

A B

A ⊕ B

A B

A ⊕ B

(A ⊕ B) 1

A 1 B 1

0

≡

0

(0)

0 0 A A

A

≡
(σ)

A

A A

A A ≡

[⊥]

A

A A

A

and their up-down mirrored versions.

Fig. 7: Main equations for FTPR

A B

≡

A B

(0)

A B

≡

A B

(⊕0)

A A

≡

A A

(0)

 ≡

[X⊕ 0]

A A

B

B B

A

≡

A

(0)
A′

s

A

≡

A

(0R)
≡

(00)
A

B

A

A A

A

≡
(ρ) [λ]

A

A

A ≡


A

[0]

B ≡


B

[0]

A B A BA B A B

 ≡

[X⊕ 0]

A A

A

B B

A A

A

 ≡


and their up-down mirrored versions.

Fig. 8: Additional equations describing the commutations of zero in FTPR

A B

A B
A B

A B

A B
A B

≡
()

A B A B

≡
(X⊕)

A A

A

A A

A

BB

B B

A B

A A

A B

A A

≡
()

B B

A ⊕ B
A ⊕ B

A ⊕ B
A ⊕ B

≡
(⊕)

A A

A A

A

≡
()

A

A A

A

AAA AAA

A

≡
(α)

s

AA

A

≡
ss

A

AA

(R)

A A

A′

≡

A′

A A

()

with A ≈λρα A′

A B

BB

A B

BB

()

AA

(X⊕)

BB

B

BB

B

A A

AA

 ≡


 ≡


and their up-down mirrored versions.

Fig. 9: Additional equations describing the commutations of in FTPR

A (B C)

A B C A B C

A (B C)

≡
(α)

A ⊕ (B ⊕ C)

A B C A B C

A ⊕ (B ⊕ C)

≡
(α⊕)

A

A A

A

≡
(ρ⊕)

≡
(λ⊕)

A

A

00

A 1

1 A

≡
(λρ)

1 A

A 1

A

≡

A

()

A′′ A′′

A′

A

≡

A

()

A A

For any colors A,A′, A′′, B,B′, C satisfying A ≈λρα A′ ≈λρα A′′ and B ≈λρα B′.

A′ B′

A B

≡

A B

A′ B′

()

A′ B′

A ⊕ B

≡

A ⊕ B

A′ B′

(⊕)

and their up-down mirrored versions.

Fig. 10: Additional equations representing ≈λρα in FTPR

AA

[R×]
s × t

t

A A

s

A

≡

A

(R1)
1

A A

A

≡

A

(R0)
0

A A

A

≡

A

(R+)
s + t

A A

s t
s × t

A B

A B

≡
s t

A B

A B

(R) s

A B

A ⊕ B

s s

A ⊕ B

A B

[⊕R]

 ≡

 ≡


and their up-down mirrored versions.

Fig. 11: Additional equations representing the semiring (R,+, 0,×, 1) in FTPR

A

A A

A

≡
(ρ) [λ]

A

A

≡
(10)

1 s

1

1

t

1

1

≡
(Can)

whenever s+ 1 = t+ 1.
A

A ≡

  ≡

  ≡

r s

1 1

r + s
[1+]

r s r×s
+r+s

[1 ∥]

and their up-down mirrored versions.

Fig. 12: Additional Equations for the full Tensor-Plus Calculus

part of the behavior of the ORs, for instance applying a Null
to the second input of the strict OR. Since the strict OR forces
both inputs to be evaluated to True or False, and since the Null
means that the input is not used, the output should not be used
either here, i.e. it should be equivalent to throwing away the
first input and outputting the Null. This is shown in Figure 14.

In the context of the general, non-functional Tensor-Plus
Calculus, we have access to the tensor unit, and we can
fully express the behavior of the ORs. For instance, the
lazy OR allows the second input to not be evaluated if the
first input is evaluated to True. In that case, it should be
equivalent to ignoring the second input and outputting True,
as in Section IV-B.

Example IV.5. Let us now revisit Example II.2 and compute
the result of the the application of a matrix to a vector: As
a first approximation, the two Pluses at the top will eliminate
each other, connecting the left-hand side of each Plus together,
and similarly for the right-hand side. After that, both the value
q and the Unit are duplicated through the Contraction. Finally,
p and q

2 are summed by the last Contraction. We obtain the

final result, corresponding to the vector
(
p+ q

2
q
2

)
, as shown

in Figure 17.
However, while each of the diagrams of the above figure

are equivalent to the others, this “first approximation” is only
correct because of the presence of the Plus at the very bottom.
Without that context, the two head-to-head Pluses would not
eliminate each others. In actual practice, instead of eliminating
them directly we slide the two head-to-head Pluses downward
until they are absorbed by the bottom Plus, as shown in
Figure 16.

D. Tensor-Plus Calculus as an Internal Language

In Section III, we built a semantics toward a semiadditive
category with an additional symmetric monoidal structure. In
this subsection, we claim that singleFTPR, the restriction of
FTPR to morphisms with a single input and a single output,
is an internal language for “semiadditive categories, with a
symmetric monoidal structure distributive over it, and such
that the homset of automorphisms over the latter’s unit are
isomorphic to R”, which means the following:

Theorem IV.6. Let singleFTPR be the full subcategory of
FTPR with for objects the colors of FTPR. We can see
singleFTPR

≡ as a semiadditive category (singleFTPR
≡,⊕, 0)

and a symmetric monoidal category (singleFTPR
≡, ,1) such



AB

A

≡
[σ]

A

B A

B BA

A B

B

≡
[X]

A B

A B

1

AB

A

≡
[σ⊕]

A

B A

B B

≡
[X⊕→X]

A B

A B

A B

A B

1

A A

A

≡
[→⊕]

A A

A

A ⊕ B
A ⊕ B

A ⊕ B
A ⊕ B

≡
(⊕)

A B A B

≡
[X⊕ ⊕]

CB

A

CA

A

BA

B ⊕ C B ⊕ C

≡
[X⊕ ⊕]

A B

A ⊕ B

A B

A ⊕ B

CC

C C

≡
[→]

A B
A B

A B

A B
A B

A B

1

≡
[⊕ →]

A C
B C

A ⊕ B C

A C
B C

A ⊕ B C

1

A B

A B

1≡
[X →]

≡
[X⊕→]

A B

A B

≡
[R⊕ ⊕]

s

A

A

B

B

s

A

A

B

B

≡
[R⊕ ⊕]

s

A

A

B

B

s

A

A

B

B


and their up-down mirrored versions.

Fig. 13: A Collection of Various Other Deducible Equations

(⊕0)
(0)
≡

[0]
≡

(ρ)
(0)
≡

(⊕0)
(⊕)
≡

Fig. 14: Rewrite of the strict OR

[X⊕ 0]
(0)
≡

[0]
≡

(0)
(ρ)
(⊕0)
(⊕)
≡

Fig. 15: Rewrite of the lazy OR

1/2 1/2

1⊕ 1

p q

≡

(X⊕)
[R⊕ ⊕]
[→⊕]

1/2 1/2

1⊕ 1

p q

(σ)
≡

(X⊕)
(ρ)

(⊕)

q/2 q/2

1⊕ 1

p

[λ]
[X⊕→]

(R)

≡

[R⊕ ⊕]
q/2 q/2

1⊕ 1

p

p + q
2 q/2

1⊕ 1

≡
[1+]

Fig. 16: Rewrite of the Application of a Probabilistic Matrix on a pbit (general case).

1/2 1/2

1⊕ 1

p q

→ 1/2 1/2

1⊕ 1

p q

→ q/2 q/2

1⊕ 1

p →
p + q

2 q/2

1⊕ 1

Fig. 17: Probability matrix applied to a pbit (simple case).

ΨA∥B :=

A AB B

(A B) ⊕ (A ⊕ B)

ΨT
A∥B :=

A AB B

(A B) ⊕ (A ⊕ B)

(A B) ⊕ (A ⊕ B)

(A B) ⊕ (A ⊕ B)

Fig. 18: Isomorphism between A ∥ B and (A | B) :=
(A B)⊕ (A⊕B).

that if we consider H = singleFTPR
≡ (with scal(s) = s) then

the semantics J−K : singleFTPR
≡ → H is the identity.

We provide a detailed proof in the appendix Section H-B.
For the most part, this is a direct consequence of the complete-
ness result of Theorem IV.2. While the restriction to single
input/output might look significant, it is actually minimal as:

Proposition IV.7. The category singleFTPR
≡ is equivalent to

the category FTPR
≡.

This equivalence follows from the existence of a natural
isomorphism ΨA∥B defined in Figure 18 between the two-
colors object A ∥ B and the one-color object (A B)⊕ (A⊕
B), and is detailed in the appendices Section H-A. Both results

extend to the non-functional case:

Theorem IV.8. Let singleTPR be the full subcategory of TPR

with for objects the colors of TPR. We can see singleTPR
≡ as

being equivalent to (singleFTPR
≡)

⊕1, such that if we consider
H = singleFTPR (with scal(s) = s) then the semantics
J−K⊕1 : singleTPR → H⊕1 is the identity.

Proposition IV.9. The category singleTPR
≡ is equivalent to

the category TPR
≡.

V. CONCLUSION

We introduced a new graphical language unifying additive
and multiplicative structure, gave it categorical semantics and
an equational theory, and proved the main properties one
should expect: universality, soundness, and completeness. We
show how this graphical language is an internal language for
semiadditive categories with an additional monoidal structure
that is distributive over it and parametrized by some algebraic
effect.

This language is a first step towards the unification of
languages based on the tensor ⊗ and those based on the
biproduct ⊕. The language allows us to reason about both
systems in parallel and superpositions of executions, as shown
by the encoding of the Switch in Example II.4.

A natural development of the Tensor-Plus Calculus consists
in accommodating recursive types in the language. We expect
significant difficulties because macros defined by induction on
the type – like the cup/caps of Section II-D and the normal
form – will no longer be well-defined.

Additional questions also arise when instantiating the lan-
guage to a specific semiring. For example, we can represent
pure quantum computation when considering R = C. How-
ever, the question of a complete equational theory for the
language on mixed states remains open (one idea could be
to rely on the discard construction [24]).

Finally, the study of the graphical interaction between
additive and multiplicative connectors has extensive literature
within the community of multiplicative-additive proof nets of
linear logic [25]. As such, a natural development would be to
attempt to split our ⊕ and into two dual connectors each
(respectively Plus ⊕ and With &, and Tensor and Par &).

REFERENCES

[1] J.-Y. Girard, “Linear logic,” Theoretical computer science, vol. 50, no. 1,
pp. 1–101, 1987.

[2] ——, “Proof-nets: the parallel syntax for proof-theory,” Lecture Notes
in Pure and Applied Mathematics, pp. 97–124, 1996.

[3] F. Lamarche, “Quantitative domains and infinitary algebras,” Theoretical
computer science, vol. 94, no. 1, pp. 37–62, 1992.

[4] J. Laird, G. Manzonetto, G. McCusker, and M. Pagani, “Weighted rela-
tional models of typed lambda-calculi,” in 2013 28th Annual ACM/IEEE
Symposium on Logic in Computer Science. IEEE, 2013, pp. 301–310.

[5] M. Pagani, P. Selinger, and B. Valiron, “Applying quantitative
semantics to higher-order quantum computing,” 2013. [Online].
Available: https://arxiv.org/abs/1311.2290

[6] T. EHRHARD, “Finiteness spaces,” Mathematical Structures in Com-
puter Science, vol. 15, no. 4, p. 615–646, 2005.

[7] T. Ehrhard, C. Tasson, and M. Pagani, “Probabilistic coherence
spaces are fully abstract for probabilistic pcf,” SIGPLAN Not.,
vol. 49, no. 1, p. 309–320, Jan. 2014. [Online]. Available:
https://doi.org/10.1145/2578855.2535865

[8] T. Tsukada and K. Asada, “Linear-algebraic models of linear logic as
categories of modules over sigma-semirings,” in Proceedings of the 37th
Annual ACM/IEEE Symposium on Logic in Computer Science, ser. LICS
’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3531130.3533373

[9] A. Díaz-Caro and O. Malherbe, “A concrete model for a typed linear
algebraic lambda calculus,” Mathematical Structures in Computer Sci-
ence, vol. 34, no. 1, pp. 1–44, 2024.

[10] K. Chardonnet, M. de Visme, B. Valiron, and R. Vilmart, “The many-
worlds calculus,” 2023.

[11] C. Comfort, A. Delpeuch, and J. Hedges, “Sheet diagrams for
bimonoidal categories,” 2020. [Online]. Available: https://arxiv.org/abs/
2010.13361

[12] F. Bonchi, A. Di Giorgio, and A. Santamaria, “Deconstructing the
calculus of relations with tape diagrams,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.09950

[13] A. Bucciarelli, T. Ehrhard, and G. Manzonetto, “A relational model of
a parallel and non-deterministic λ-calculus,” in Logical Foundations of
Computer Science, S. Artemov and A. Nerode, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 107–121.

[14] M. Pagani, P. Selinger, and B. Valiron, “Applying quantitative seman-
tics to higher-order quantum computing,” in Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL’14, S. Jagannathan and P. Sewell, Eds. ACM, 2014,
pp. 647–658.

[15] T. Carette, “Wielding the zx-calculus, flexsymmetry, mixed states, and
scalable notations. (manier le zx-calcul, flexsymétrie, systèmes ouverts
et limandes),” Ph.D. dissertation, University of Lorraine, Nancy, France,
2021. [Online]. Available: https://tel.archives-ouvertes.fr/tel-03468027

[16] P. Hackney and M. Robertson, “On the category of props,” Appl.
Categorical Struct., vol. 23, no. 4, pp. 543–573, 2015.

[17] B. Coecke and R. Duncan, “Interacting quantum observables: categorical
algebra and diagrammatics,” New Journal of Physics, vol. 13, no. 4, p.
043016, 2011.

[18] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron,
“Quantum computations without definite causal structure,” Physical
Review A, vol. 88, no. 2, Aug. 2013. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevA.88.022318

[19] M. Araújo, F. Costa, and i. c. v. Brukner, “Computational
advantage from quantum-controlled ordering of gates,” Phys. Rev.
Lett., vol. 113, p. 250402, Dec 2014. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevLett.113.250402

[20] M. M. Taddei, J. Cariñe, D. Martínez, T. García, N. Guerrero,
A. A. Abbott, M. Araújo, C. Branciard, E. S. Gómez, S. P.
Walborn, L. Aolita, and G. Lima, “Computational advantage from
the quantum superposition of multiple temporal orders of photonic
gates,” PRX Quantum, vol. 2, no. 1, Feb. 2021. [Online]. Available:
http://dx.doi.org/10.1103/PRXQuantum.2.010320

[21] A. A. Abbott, J. Wechs, D. Horsman, M. Mhalla, and C. Branciard,
“Communication through coherent control of quantum channels,”
Quantum, vol. 4, p. 333, Sep. 2020. [Online]. Available: http:
//dx.doi.org/10.22331/q-2020-09-24-333

[22] G. Kelly, “On maclane’s conditions for coherence of natural
associativities, commutativities, etc.” Journal of Algebra, vol. 1, no. 4,
pp. 397–402, 1964. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0021869364900183

[23] A. Joyal and R. Street, “Braided tensor categories,” Advances in
Mathematics, vol. 102, no. 1, pp. 20–78, 1993. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0001870883710558

[24] T. Carette, E. Jeandel, S. Perdrix, and R. Vilmart, “Completeness of
Graphical Languages for Mixed States Quantum Mechanics,” in 46th
International Colloquium on Automata, Languages, and Programming
(ICALP 2019), ser. Leibniz International Proceedings in Informatics
(LIPIcs), C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi,
Eds., vol. 132. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019, pp. 108:1–108:15. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2019/10684

[25] D. J. D. Hughes and R. J. Van Glabbeek, “Proof nets for
unit-free multiplicative-additive linear logic,” ACM Trans. Comput.
Logic, vol. 6, no. 4, p. 784–842, Oct. 2005. [Online]. Available:
https://doi.org/10.1145/1094622.1094629

[26] M. L. Laplaza, “Coherence for distributivity,” in Coherence in Cate-
gories, G. M. Kelly, M. Laplaza, G. Lewis, and S. Mac Lane, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1972, pp. 29–65.

[27] J. M. Maranda, “On fundamental constructions and adjoint functors,”
Canadian Mathematical Bulletin, vol. 9, no. 5, p. 581–591, 1966.

[28] S. Brooke and K. V. Stone, “Monads and comonads in intensional
semantics,” 1993. [Online]. Available: https://apps.dtic.mil/sti/citations/
ADA266522

https://arxiv.org/abs/1311.2290
https://doi.org/10.1145/2578855.2535865
https://doi.org/10.1145/3531130.3533373
https://arxiv.org/abs/2010.13361
https://arxiv.org/abs/2010.13361
https://arxiv.org/abs/2210.09950
https://tel.archives-ouvertes.fr/tel-03468027
http://dx.doi.org/10.1103/PhysRevA.88.022318
http://dx.doi.org/10.1103/PhysRevA.88.022318
https://link.aps.org/doi/10.1103/PhysRevLett.113.250402
https://link.aps.org/doi/10.1103/PhysRevLett.113.250402
http://dx.doi.org/10.1103/PRXQuantum.2.010320
http://dx.doi.org/10.22331/q-2020-09-24-333
http://dx.doi.org/10.22331/q-2020-09-24-333
https://www.sciencedirect.com/science/article/pii/0021869364900183
https://www.sciencedirect.com/science/article/pii/0021869364900183
https://www.sciencedirect.com/science/article/pii/S0001870883710558
http://drops.dagstuhl.de/opus/volltexte/2019/10684
https://doi.org/10.1145/1094622.1094629
https://apps.dtic.mil/sti/citations/ADA266522
https://apps.dtic.mil/sti/citations/ADA266522

APPENDIX A
COMMUTATIVE SEMIRINGS AND SEMIMODULES

In this appendix, we recall the basic notions about semirings
that we need for our paper.

A. Commutative Semirings

Definition A.1. A monoid (G,+, 0) is a set G together with a
distinguised element 0 and a binary operation + : G×G → G
such that:

(a+ b) + c = a+ (b+ c)
a+ 0 = a

It is commutative if additionally

a+ b = b+ a

Definition A.2. A semiring (R,+, 0,×, 1) is composed of a
commutative monoid (R,+, 0) and a monoid (R,×, 1) with
the latter distributive over the former:

a× 0 = 0
a× (b+ c) = a× b+ a× c

It is commutative whenever (R,×, 1) is commutative.

This definition can be instantiated as the complex num-
bers (C,+, 0,×, 1) to represent pure quantum computa-
tions, the non-negative real numbers (R≥0,+, 0,×, 1) for
probabilistic computations, or the booleans ({False,True},
OR,False,AND,True) for non-deterministic computations.

The first two examples are cancellative, that is whenever
a + c = b + c then a = b, while the last example does not
since False OR True = True OR True but False ̸= True.

Definition A.3. A semiring homomorphism f :
(R,+, 0,×, 1) → (R′,+′, 0′,×′, 1′) is a function f : R → R′

that preserves all the structures:

f(a+ b) = f(a) +′ f(b) f(0) = 0′

f(a× b) = f(a)×′ f(b) f(1) = 1′

A semiring homomorphism is an isomorphism whenever it is
inversible as a function.

B. Semimodules

Semimodules are the generalisation of vector spaces where
instead of a field they are parametrised by a commutative
semiring.

Definition A.4. Let (R,+, 0,×, 1) be a commutative semiring.
An R-semimodule (M, ·,+, zero) is a semigroup (M,+, zero)
together with a binary operation · : R×M → M satisfying:

1 · u = M (a× b) · u = a · (b · u)
0 · u = zero (a+ b) · u = a · u + b · u

a · zero = zero a · (u + v) = a · u + a · v

In this paper, we do not consider a single semimodule,
but instead a category H where every homeset H(H,K) is
a semimodule, compatible with each others as follows.

Definition A.5. A category H is enriched over R-semimodules
if for every object H,K, the homeset H(H,K) is a semimod-
ule (H(H,K), ·,+, zero), such that:

(a× b) · (g ◦ f) = (a · g) ◦ (b · f)
zero ◦ f = zero
g ◦ zero = zero

(g1 + g2) ◦ f = (g1 ◦ f) + (g2 ◦ f)
g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2

In the above definition, the notations are ambiguous as each
semimodule has its own ·, + and zero, so we ought to give
them distinct names ·H,K , +H,K and zeroH,K . We consider
that this ambiguity is worth the improvement in readability.

APPENDIX B
CATEGORY THEORY

In this appendix, we provide detailed definition of the
categorical notions used in this paper, including proofs of the
various results (all of them either already proved in various
textbooks or known in folklore) we use.

A. The Monoidal Structure

At the core of the categories we use in this paper is the
notion of monoidal category. In this subsection, we recall some
basic notions about them, including Mac Lane’s coherence
theorem. In a few words:

• A monoidal category is a category where we pair objects
together, and where this "pairing" is associative and
has a neutral element, but where those associativity and
neutrality are not strict but only "up to an isomorphism".

• Mac Lane’s coherence theorem ensures that even though
the associativity and neutrality are "up to an isomor-
phism", those isomorphisms are fully transparent and
could be handwaved9 without causing issues.

Definition B.1. A monoidal category (H, ,1) is a category
H together with a bifunctor and the following natural
isomorphisms:

• the left-unitor λ : 1 H → H
• the right-unitor ρ : H 1→ H
• the associator α : (H K) L → H (K L)

satisfying the following coherence laws:

(H 1) K H (1 K)
α

H K

ρ id id λ

(H K) (L D)

((H K) L) D

(H (K L)) D

H (K (L D))

H ((K L) D)

α

α id id α

α

α

It is a symmetric monoidal category if additionally it has a
natural isomorphism:

• The swap σ : H K → K H

satisfying the following coherence laws:

9This "handwaving" can actually be formalised as a strictification, where
one builds an equivalent category where the associativity and neutrality are
strict.

H K H K
id

K H

σ σ

H (K L)

(H K) L

(K H) L

(K L) H

K (L H)

σα

K (H L)

σ id

α id σ

α

H 1 1 H
σ

K H

ρ λ

We define the following shorthand:

n

i=1

Hi :=


1 whenever n = 0

H1 whenever n = 1(
n−1
i=1 Hi

)
Hn whenever n ≥ 2

We write H1, . . . ,Hn for the set of objects of H that are
built with from the objects H1, . . . ,Hn each used exactly
once, and in that specific order, with any number of copies of
the object 1 inserted at any position. We note that n

i=1 Hi ∈
H1, . . . ,Hn .
For any two A,B ∈ H1, . . . ,Hn , we write m : A → B

for the natural10 isomorphism built using ◦ and from the
morphisms id, α , λ , ρ and their inverses11. In particular,
m : (

n
i=1 Hi) (

m
j=1 Hn+j) → m

i=1 Hi is well defined.
The uniqueness of m follows from Mac Lane’s coherence
theorem, although some subtleties are to be noted:

Example B.2. We consider the category of sets and functions
between sets. It is a monoidal category for the disjoint union:

S ⊎ T = {(0, a) | a ∈ S} ∪ {(1, b) | b ∈ T}

10The naturality is with respect to each of the Hi.
11Notably, even in a symmetric monoidal category, we disallow the swap

σ from appearing in m .

For a non-empty set S, we define Left(S) and Right(S) as the
smallest sets such as:

Left(S) = Left(S) ⊎ S Right(S) = S ⊎ Righ(S)

Concretely, an element of Left(S) is a sequence of any number
of 0, followed by a 1, and finally an element of S. Similarly,
an element of Right(S) is a sequence of any number of 1,
followed by a 0, and finally an element of S. We look at the
associator α:

(Left(S) ⊎ S) ⊎ Right(S) → Left(S) ⊎ (S ⊎ Right(S))
(0, (0, x)) 7→ (0, x)
(0, (1, x)) 7→ (1, (0, x))
(1, x) 7→ (1, (1, x))

But using the equations satisfied by Left(S) and Right(S), we
have:

(Left(S) ⊎ S) ⊎ Right(S) = Left(S) ⊎ Right(S)
= Left(S) ⊎ (S ⊎ Right(S))

Said otherwise, id is a valid morphism between those two
objects. And since id ̸= α, we found two structural morphisms
between the same objects that are different, hence breaking the
naive understanding of Mac Lane’s coherence.

This counterexample is why the actual coherence theorem
is about formal morphisms, as we define here.

Definition B.3. A -formal object of H is an element of the
following syntax:

A,B, · · · ::= 1 | A B | H (for any H object of H)

We write (-FormH, ,1) for the monoidal category of
formal objects together with only the structural morphisms:
λ , λ −1, ρ , ρ −1, α , α −1, and their composition through
◦, and . There is an obvious forgetful functor U :

-FormH → H.

Theorem B.4 (Mac Lane’s Coherence Theorem). Given two
morphisms f, g ∈ -FormH(A,B), we necessarily have f =
g.

As such, when we say that m is unique, it is only correct
because we are implicitly working with formal morphisms,
hence forbidding any "using the fact that an object can be
written in different equivalent ways" like in the previous
counter-example.

B. The Semiadditive Structure

The second structure central to our paper is the one of
categories with (finite) biproducts, also called semiadditive
categories.

Definition B.5. A semiadditive category (H,⊕, 0) is a cate-
gory H with finite biproducts, that is a bifunctor ⊕ and the
following natural transformations:

• the left-injection ιℓ : H → H ⊕K
• the right-injection ιr : K → H ⊕K
• the initial morphism zero : 0 → K
• the co-diagonal ∇ : H ⊕H → H

• the left-projection πℓ : H ⊕K → H
• the right-projection πr : H ⊕K → K
• the terminal morphism12 zero : H → 0

• the diagonal ∆ : H → H ⊕H

satisfying the following coherence laws:
• For every f : H → 0 or f : 0 → H , necessarily f =

zero.
• For every f : L → H , g : L → K, f ′ : H → L′ and

g′ : H → L′, then

h = (f ⊕ g) ◦∆ : L → H ⊕K

h′ = ∇ ◦ (f ′ ⊕ g′) : H ⊕K → L′

are the unique morphisms such that:

H ⊕K

H K

∀L

πrπℓ

∀g∀f ∃!h

H ⊕K

H K

∀L′

ιrιℓ

∀g′∀f ′ ∃!h′

The uniqueness of h and h′ is a very strong property, which
allows us to derive many well-known identities, such as πℓ ◦
∆ = id.

Proposition B.6. The semiadditive category (H,⊕, 0) is sym-
metric monoidal, meaning that we can define the natural
isomorphisms λ⊕, ρ⊕, α⊕, and σ⊕. Additionally, it is enriched
over commutative monoids (H(H,K),+, zero), where:

• the neutral element zero : H → K is the composition
of the terminal morphism zero : H → 0 and the initial
morphism zero : 0 → K.

• the sum f+g is simply ∇ ◦ (f ⊕ g) ◦∆.
We also note that (H(H,H),+, zero, ◦, id) is a semiring.

Proof. We simply take
• λ⊕ := ιℓ

12We reuse the name zero at many places, and this is deliberate as the
notation is never ambiguous. For example, the initial morphism zero : 0 → 0
is the same as the terminal morphism zero : 0 → 0.

• ρ⊕ := ιr
• α⊕ := (πℓ ◦ πℓ, (πr ◦ πℓ, πr))
• σ⊕ := (πr, πℓ)

and the coherence laws follow from the properties of fi-
nite biproducts. Similarly, those properties directly lead to
(H(H,K),+, zero) being a commutative monoid, and the
composition ◦ being linear with respect to that monoid.

Since (H,⊕, 0) is symmetric monoidal, we can define

⊕
H1, . . . ,Hn⊕

similarly to H1, . . . ,Hn .

Definition B.7. For A ∈
⊕
H1, . . . ,Hn⊕

, and fi ∈ H(Hi,K)

for every i, we write(
f1 . . . fn

)
:= ∇◦(∇◦(f1⊕f2) · · ·⊕fn)◦m⊕ ∈ H(A,K)

Similarly, for B ∈
⊕
K1, . . . ,Km⊕

, and fj ∈ H(H,Kj) for
every j, we write f1

...
fm

 := m⊕ ◦ (((f1 ⊕ f2) ◦∆ · · · ⊕ fn) ◦∆ ∈ H(H,B)

And for A ∈
⊕
H1, . . . ,Hn⊕

, B ∈
⊕
K1, . . . ,Km⊕

, and fi,j ∈
H(Hi,Kj) for every i, j we write f1,1 . . . fn,1

...
...

f1,m . . . fn,m

 = (fi,j) 1≤i≤n
1≤j≤m

for the morphism of H(A,B) defined as
(
f1,1 . . . fn,1

)
...(

f1,m . . . fn,m
)
 =


 f1,1

...
f1,m

 . . .

 fn,1
...

fn,m




The matrix notation introduced can be composed using the
usual product of matrices, that is:

(gj,k)1≤j≤m
1≤k≤p

◦ (fi,j) 1≤i≤n
1≤j≤m

=

 m∑
j=1

gj,k ◦ fi,j


1≤i≤n
1≤k≤p

We note that the elements of the matrix are uniquely deter-
mined, as for 1 ≤ i0 ≤ n and 1 ≤ j0 ≤ m:

fi0,j0 =
1 . . . j0 . . . m(
. . . zero id zero . . .

)
◦(fi,j) 1≤i≤n

1≤j≤m
◦

1
...
i0
...
n



...
zero
id

zero
...


The following lemma is a direct consequence of that fact.

Lemma B.8. For A ∈
⊕
H1, . . . ,Hn⊕

, B ∈
⊕
K1, . . . ,Km⊕

,
and f ∈ H(A,B), then f has a unique matrix form given by

f =


1 . . . j . . . m(
. . . zero id zero . . .

)
◦ f ◦

1
...
i
...
n



...
zero
id

zero
...




1≤i≤n
1≤j≤m

In particular, for f, g ∈ H(A,B), the morphisms f and g are
equal if and only if for every 1 ≤ i ≤ n and 1 ≤ j ≤ m we
have

1 . . . j . . . m(
. . . zero id zero . . .

)
◦ f ◦

1
...
i
...
n



...
zero
id

zero
...


=

1 . . . j . . . m(
. . . zero id zero . . .

)
◦ g ◦

1
...
i
...
n



...
zero
id

zero
...


Definition B.9. Assuming a semiring (R,+, 0,×, 1), a dis-
tinguished object 1 and a semiring isomorphism scal : R →
H(1,1), then for every n × m matrix M = (mi,j)i,j with
coefficients in R, we can define ⌊M⌋ as the unique morphism
of H(

⊕n
i=1 1,

⊕m
j=1 1) equal to

⌊M⌋ = (scal(mi,j)) 1≤i≤n
1≤j≤m

Proposition B.10. The operation M 7→ ⌊M⌋ is a full and
faithful functor, that is linear for +.

Proof. The functoriality and linearity follows from scal(−)
being a semiring homomorphism. The fullness and faitful-
ness follows from scal(−) being an isomorphism, and from
Lemma B.8.

C. Adding Distributivity

In this paper, we consider a category with two structures,
one distributive over the other. We note that the use of
"distributive category" in this paper is non-standard, as it is
usually used whenever is a cartesian product (ours is only
monoidal) and ⊕ is a coproduct (ours is even a biproduct).
Distributivity can even be studied in the case where ⊕ is only
a symmetric monoidal product, as done in [26].

We now consider (H, ,1,⊕, 0) such that (H, ,1) is a
symmetric monoidal category and (H,⊕, 0) is a semiadditive
category.

Definition B.11. The category H is said distributive if the
following two natural transformations are isomorphisms:

• the left-distributor distℓ : H (K ⊕ L) → (H K) ⊕
(H L) defined as (id πℓ⊕id πr)◦∆, with for inverse
∇ ◦ (id ιℓ ⊕ id ιr).

• the left-annihilator zero : H 0 → 0 defined as the
terminal morphism, with for inverse the initial morphism.

Since is symmetric, the following natural transformations
are also isomorphisms in a distributive category:

• the right-distributor distr : (H ⊕ K) L → (H L) ⊕
(K L) defined as (πℓ id⊕πr id)◦∆, with for inverse
the co-pairing ∇ ◦ (ιℓ id ⊕ ιr id)

• the right-annihilator zero : 0 H → 0 which is the
terminal morphism, with for inverse the initial morphism.

Lemma B.12. We have the following properties about the
distributors:

distℓ ◦ (id ∆) = ∆ distr ◦ (∆ id) = ∆

(id ∇) ◦ dist−1
ℓ = ∇ (∇ id) ◦ dist−1

r = ∇

Proof. For the first equation, we write lhs for the left-hand-
side, and want to prove that lhs = ∆. We start by considering
πℓ ◦ lhs. Using the fact that πℓ ◦ (f ⊕ g) = f ◦πℓ, and the fact
that πℓ ◦∆ = id, we have:

πℓ ◦ lhs = πℓ ◦ ((id πℓ)⊕ (id πr)) ◦∆ ◦ (id ∆)
= (id πℓ) ◦ πℓ ◦∆ ◦ (id ∆)
= (id πℓ) ◦ (id ∆)
= id

Similarly, we obtain πr◦lhs = id. Using the universal property
of the product ⊕, we know that there exists a unique morphism
h such that πr ◦ h = id and πℓ ◦ h = id, and this morphism
is exactly ∆. As such, lhs = ∆.

The three other cases are proved similarly.

Proposition B.13. Whenever H is distributive, the semiring
(H(1,1),+, zero, ◦, id) is commutative, and H is enriched
over semimodules13 (H(H,K), ·,+, zero) over that commu-
tative semiring, where x ·f is defined as λ ◦ (x f)◦ (λ)−1

for x ∈ H(1,1) and f ∈ H(H,K).

Proof. For f, g ∈ H(1,1), we have:

f ◦ g = f ◦ λ ◦ (λ)−1 ◦ g
= λ ◦ (f id) ◦ (id g) ◦ (λ)−1

= λ ◦ (id g) ◦ (f id) ◦ (λ)−1

= g ◦ λ ◦ (λ)−1 ◦ f
= g ◦ f

Hence the semiring is commutative.
From the distributivity of over ⊕ we can deduce the

distributivity of over +. More precisely, we need to show:

h (f+g) = (h f)+(h g) h zero = zero
(f+g) h = (f h)+(g h) zero h = zero

First, to show that h (f+g) = (h f)+(h g), we simply use
Lemma B.12 and the naturality of distℓ to make the following
diagram commute:

13Semimodules are "vector spaces" but where instead of a field we have a
semiring . See Definition A.4.

L H

h (f+g)

M K

L (H ⊕H)

M (K ⊕K)

h (f ⊕ g)

id ∇

id ∆

(L H)⊕ (L H)
distℓ

(M K)⊕ (M K)
distℓ

(h f)⊕ (h g)

∆

∇

(h f)+(h g)

L H

M K

id

id
Then, for h zero = zero, we start by a special case:

• For h zero : L H → L 0, since L 0 is isomorphic
to the terminal element 0, then L 0 is also terminal,
hence there exists a unique morphism from L H to
L 0, hence h zero = zero.

• Now, for the general case h zero : L H → L K, we
decompose it using L 0 as an intermediary object, so
h zero = (h zero) ◦ (id zero). Using the previous
case, we obtain h zero = zero ◦ (id zero) = zero.

We proceed similarly to show that (f+g) h =
(f h)+(g h) and zero h = zero. From those
and the naturality of unitors, it directly follows that
(H(H,K), ·,+, zero) is a semimodule, that is:

id · f = f (x ◦ y) · f = x · (y · f)
zero · f = zero (x + y) · f = x · f + y · f
x · zero = zero x · (f + g) = x · f + x · g

It remains to show that it is an enrichment, that is:

(x ◦ y) · (g ◦ f) = (x · g) ◦ (y · f)
zero ◦ f = zero
g ◦ zero = zero

(g1 + g2) ◦ f = (g1 ◦ f) + (g2 ◦ f)
g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2

The first equation follows from the bifunctoriality of . The
second and third ones follows from the fact that one can see
zero : H → K as the composition of the terminal morphism
H → 0 and the initial morphism 0 → K. The fourth and fifth
equations are simply the naturality of ∆ and ∇.

As we would like to extend Mac Lane’s coherence result to
distributive categories, we also need to extend the notion of
formal morphism.

Definition B.14. A formal object of H is an element of the
following syntax:

A,B, · · · ::= 0 | 1 | A⊕B | A B |H (for any H object of H)

We write (FormH, ,1,⊕, 0) for the distributive category of
formal objects together with only the structural morphisms:

λ , λ −1, ρ , ρ −1, α , α −1, σ , ιℓ, ιr, πℓ, πr, zero,∇,∆,
and their composition through ◦, , ⊕. There is an obvious
forgetful functor U : FormH → H.

We will rely on those formal morphisms to show equality
of some specific morphisms of H. Indeed, if we want to show
that f = g in H, and notice that f and g are built from
structural morphisms, then by looking at their corresponding
formal morphism U(f ′) = f and U(g′) = g it is enough to
prove that f ′ = g′.

We say that a formal object is in normal form if it is of the
form

⊕n
i=1

mi

j=1 Hi,j for some objects Hi,j of H. In particu-
lar, 0 and 1 are in normal form14. For every formal object A,
we define inductively in Figure 19 its normal form N (A), and
the normalization natural isomorphism nA : A → N (A). In
this definition, we prioritize the right-distributor over the left-
distributor, meaning that we read pairs using the lexicographic
order. This normalization extends to a full and faithful functor
with for f : A → B, N (f) : N (A) → N (B) defined as
nB ◦ f ◦ n−1

A . Relying on Definition B.7, we choose to see
N (f) as a matrix.

Lemma B.15. We consider A =
⊕n

i=1
n′
i

i′=1 Hi,i′ and B =⊕m
j=1

m′
j

j′=1 Kj,j′ . We write

projni =
1 . . . i . . . n(
. . . zero id zero . . .

)

injni =

1
...
i
...
n



...
zero
id

zero
...


Those morphisms satsify

projn+m
i = N (projni ⊕ zero) injn+m

i = N (injni ⊕ zero)

with zero : B → 0 and zero : 0 → B respectively.

projn+m
n+j = N (zero ⊕ projmj) injn+m

n+j = N (zero ⊕ injmj)

with zero : A → 0 and zero : 0 → A respectively.

projn×m
(i−1)×n+j = N (projni projmj)

injn×m
(i−1)×n+j = N (injni injmj)

Proof. We will focus on the equations satisfied by proj, as
the equations satisfied by inj can be derived following exactly
the same logic. We assume that A ̸= 0 (n > 0) and B ̸= 0

(m > 0) as otherwise the equations are trivially true.
We start by unfolding the explicit definition of projni :

projni =

{
πn
ℓ if i = 0

πr ◦ π(n−i)
ℓ if i > 1

: A →
n′
i

i′=1

Hi,i′

14With n = 0 for 0, and n = 1,m1 = 0 for 1.

Then, since N (A) = A and N (B) = B, we can rewrite more
explicitly the equations that we want to prove:

projn+m
i

?
= ρ⊕ ◦ (projni ⊕ zero) ◦m⊕

projn+m
n+j

?
= λ⊕ ◦ (zero ⊕ projmj) ◦m⊕

projn×m
(i−1)×n+j

?
= m ◦ (projni projmj) ◦ n−1

A B

We recall that ρ⊕ is simply πℓ, and that πℓ satisfies πℓ ◦ (f ⊕
g) = f ◦ πℓ. As such, the first equation can be rewritten as:

projn+m
i

?
= projni ◦ πℓ ◦m⊕

Then, we look at m⊕ : N (A⊕B) → A⊕B from that equation:

• If B =
m′

1

j′=1 K1,j′ then m = 1 and m⊕ is the identity,
hence

projni ◦ πℓ ◦m⊕ = projni ◦ πℓ

= projn+1
i

= projn+m
i

• Otherwise m > 1, then m⊕ is simply a combination of
m − 1 associators, so by iterating πℓ ◦ α = πℓ ◦ πℓ we
obtain πℓ ◦m⊕ = πm

ℓ , hence

projni ◦ πℓ ◦m⊕ = projni ◦ πm
ℓ

= projn+m
i

Similarly to ρ⊕, we recall that λ⊕ is simply πr, and that πr

satisfies πr ◦ (f ⊕ g) = g ◦ πr. As such, the first equation can
be rewritten as:

projn+m
i

?
= projmj ◦ πr ◦m⊕

Then, we look at m⊕ : N (A⊕B) → A⊕B from that equation
it is simply a combination of m inverses of associators, so
by iterating πr ◦ α⊕−1 = πr ⊕ id we obtain πr ◦ m⊕ =
((πr ⊕ id) · · · ⊕ id). Hence

projmj ◦ πr ◦m⊕ = projmi ◦ ((πr ⊕ id) · · · ⊕ id)

=

{
πm
ℓ ◦ ((πr ⊕ id) · · · ⊕ id) if j = 0

πr ◦ π(m−j)
ℓ ◦ ((πr ⊕ id) · · · ⊕ id) if j > 1

=

{
πr ◦ πm

ℓ if j = 0

πr ◦ π(m−j)
ℓ if j > 1

= πr ◦ π(m−j)
ℓ

= πr ◦ π(n+m−n−j)
ℓ

= projn+m
n+j

Now, for the last equation, we take a closer look at n−1
A B

and relying on nA = id we start to unfold its definition as:

A N (A) nA

0 0 id

1 1 id

H H id

B ⊕ C N (C) λ⊕ ◦ (nB ⊕ nC)
with N (B) = 0

B ⊕ C N (B) ρ⊕ ◦ (nB ⊕ nC)
with N (B) ̸= 0

and N (C) = 0

B ⊕ C N (B)⊕N (C) nB ⊕ nC

with N (B) ̸= 0

and N (C) =
p
k=1 Lk

B ⊕ C N (B ⊕ C ′)⊕ p
k=1 Lk (nB⊕C′ ⊕ id) ◦ α⊕−1 ◦ (id ⊕ nC)

with N (B) ̸= 0

and N (C) = C ′ ⊕ p
k=1 Lk

B C 0 zero ◦ (nB nC)
with N (B) = 0

B C N (C) λ ◦ (nB nC)
with N (B) = 1

B C 0 zero ◦ (nB nC)
with N (B) /∈ {0,1}
and N (C) = 0

B C N (B) ρ ◦ (nB nC)
with N (B) /∈ {0,1}
and N (C) = 1

B C N (B′ C)⊕N (
m
j=1 Kj C) m⊕ ◦ (nB′ C ⊕ n m

j=1 Kj C) ◦ distr ◦ (nB id)
with N (B) = B′ ⊕ m

j=1 Kj

and N (C) /∈ {0,1}

B C N (B C ′)⊕N (B
p
k=1 Lk) (nB C′ ⊕ nB p

k=1 Lk
) ◦ distℓ ◦ (id nC)

with N (B) =
m
j=1 Kj

and N (C) = C ′ ⊕ p
k=1 Lk

B C
m+p
i=1 Hi m

with N (B) =
m
j=1 Ki with Hj = Kj

and N (C) =
p
k=1 Lk and Hm+k = Lk

Fig. 19: Normalization of formal objects.

n−1
A B

= dist−1
r

◦

(
id ⊕ n−1

n′
n

i′=n
Hn,i′ B

)
◦ . . .

◦
((

dist−1
r ⊕ id

)
· · · ⊕ id

)
◦

(((
n−1

n′
1

i′=1
H1,i′ B

⊕ n−1
n′
2

i′=2
H2,i′ B

)
⊕ id

)
· · · ⊕ id

)
◦ m⊕

Then, using (πℓ id)◦dist−1
r = πℓ and (πr id)◦dist−1

r = πr,
we have

(projni id) ◦ n−1
A B = n−1

A
m′

j

j′=j
Kj,j′

◦ projni ◦m⊕

We take a closer look at n−1

A
m′

j

j′=j
Kj,j′

and relying on nB =

id we start to unfold its definition as:

n−1

A
m′

j

j′=j

= dist−1
ℓ

◦ (id ⊕m)
◦ . . .

◦
((

dist−1
ℓ ⊕ id

)
· · · ⊕ id

)
◦ (((m ⊕m)⊕ id) · · · ⊕ id)

Then, using (id πℓ)◦dist−1
ℓ = πℓ and (id πr)◦dist−1

ℓ = πr,
we have

(id projmj) ◦ n−1
n′
i

i′=i
Hi,i′ B

= m ◦ projmj

Hence

m ◦(projni projmj)◦n−1
A B = m ◦m ◦projmj ◦projni ◦m⊕

We note that in this case, the two successive m are inverse of
one another. Additionally, m⊕ from that equation it is simply
a combination of associators, so by iterating πℓ ◦ α = πℓ ◦ πℓ

we obtain

projmj ◦ projni ◦m⊕ = projn×m
(i−1)×m+j

Hence the expected result:

m ◦ (projni projmj) ◦ n−1
A B = projn×m

(i−1)×m+j

Lemma B.16. We consider f : A → B, g : B → C and
h : C → W , and write N (f), N (g) and N (h) as:

(fi,j) 1≤i≤n
1≤j≤m

(gj,k)1≤j≤m
1≤k≤p

(hk,ℓ)1≤k≤p
1≤ℓ≤q

The composition corresponds to the usual product of matrices:

N (g ◦ f) =

 m∑
j=1

gj,k ◦ fi,j


1≤i≤n
1≤k≤p

The biproduct corresponds ot the usual direct sum of matrices:

N (f ⊕ h) =

(fi,j) 1≤i≤n
1≤j≤m

(zero)1≤k≤p
1≤j≤m

(zero)1≤i≤n
1≤ℓ≤q

(hk,ℓ)1≤k≤p
1≤ℓ≤q


The tensor corresponds to the usual Kronecker product of
matrices: N (f h) =

(N (f1,1 hk,ℓ))1≤k≤p
1≤ℓ≤q

. . . (N (fn,1 hk,ℓ))1≤k≤p
1≤ℓ≤q

...
...

(N (f1,m hk,ℓ))1≤k≤p
1≤ℓ≤q

. . . (N (fn,m hk,ℓ))1≤k≤p
1≤ℓ≤q


Proof. For the composition:

N (g) ◦ N (f) = nC ◦ g ◦ n−1
B ◦ nB ◦ f ◦ n−1

A

= nC ◦ g ◦ f ◦ n−1
A

= N (g ◦ f)
For the biproduct and the tensor, we rely on Lemma B.15 and
Lemma B.8 to make a coefficient-by-coefficient analysis.

Proposition B.17. Let f be a formal morphism obtained
from λ , λ −1, α , α −1, λ⊕, λ⊕−1, α⊕, α⊕−1, through
composition, , and ⊕. Then N (f) = id. It follows that any
two such formal morphisms f, g : A → B are necessarily
equal.

Proof. We proceed by induction on f . For the base cases, we
rely on Lemma B.15 to check that every coefficient of N (f)
is id on the diagonal and zero otherwise. For the inductive
case, we directly use Lemma B.16.

As a direct application of this proposition, we can define
JA ≈λρα BK in a unique way:

Definition B.18. For A, a color of our graphical language,
we define JAKForm as the following formal object:

J0KForm = 0 JA⊕BKForm = JAKForm ⊕ JBKForm
J1KForm = 1 JA BKForm = JAKForm JBKForm

We have JAK = U(JAKForm). If we assume A ≈λρα

B as defined in Section II-A, then there exists a unique
formal morphism JA ≈λρα BKForm : JAK → JBK such
that N (JA ≈λρα BKForm) = id. We then simply take
JA ≈λρα BK = U(JA ≈λρα BKForm).

Proposition B.19. Let f be a formal morphism obtained
through composition, , and ⊕ from:

• λ , λ −1, α , α −1, λ⊕, λ⊕−1, α⊕, α⊕−1,
• σ⊕, distℓ, dist−1

ℓ , distr, dist−1
r ,

• zero whenever it is A 0 → 0, 0 A → 0, 0 → 0 A
or 0 → A 0.

Then N (f) is a permutation matrix, that is exactly one
coefficient in every row and every column is id and the others
are zero. It follows that any two such formal morphisms
f, g : A → B are equal if and only if they correspond to
the same permutation.

Proof. We proceed by induction on f . For the base cases, we
rely on Lemma B.15 to check that every coefficient of N (f)

is indeed id or zero with exactly one id per column and row.
For the inductive case, we directly use Lemma B.16.

D. The Parallel Monoidal Structure

In the core of the paper, we claim that we can derive a third
monoidal product that is the superposition of the other two.
We prove that claim in this subsection.

We now consider (H, ,1,⊕, 0) to be a distributive cat-
egory as defined above, and additionally assume that is
symmetric.

Proposition B.20. We define A|B = (A B)⊕ (A⊕B), and
similarly f |g = (f g)⊕(f⊕g). It is a bifunctor, and (H, |, 0)
is a symmetric monoidal category.

Proof. We start by proving that is a monoidal category,
postponing the symmetric part. We do the proof in FormH,
as any equality proved between formal morphisms leads to
an equality between the corresponding morphisms of H. The
unitors are defined as follows:

λ| : 0|A
=
(0 A)⊕ (0⊕A)
↓ zero ⊕ λ⊕

0⊕A
↓ λ⊕

A

ρ| : A|0
=
(A 0)⊕ (A⊕ 0)
↓ zero ⊕ ρ⊕

0⊕A
↓ λ⊕

A

Defining the associator properly is more complex. While
we provide an explicit definition below (omitting the for
readability), we will instead work with its normalization.

α| : (A|B)|C
=
(AB ⊕ (A⊕B))C ⊕ ((AB ⊕ (A⊕B))⊕ C)
↓ distr ⊕ id
((AB)C ⊕ (A⊕B)C)⊕ ((AB ⊕ (A⊕B))⊕ C)
↓ (α ⊕ distr)⊕ id
(A(BC)⊕ (AC ⊕BC))⊕ ((AB ⊕ (A⊕B))⊕ C)
↓ m⊕

A(BC)⊕ (AC ⊕ ((BC ⊕AB)⊕ (A⊕ (B ⊕ C))))
↓ id ⊕ (id ⊕ (σ⊕ ⊕ id))
A(BC)⊕ (AC ⊕ ((AB ⊕BC)⊕ (A⊕ (B ⊕ C))))
↓ m⊕

(A(BC)⊕ (AC ⊕AB))⊕ ((BC ⊕A)⊕ (B ⊕ C))
↓ (id ⊕ σ⊕)⊕ (σ⊕ ⊕ id)
(A(BC)⊕ (AB ⊕AC))⊕ ((A⊕BC)⊕ (B ⊕ C))
↓ m⊕

(A(BC)⊕ (AB ⊕AC))⊕ (A⊕ (BC ⊕ (B ⊕ C)))

↓ (id ⊕ dist−1
ℓ)⊕ id

(A(BC)⊕A(B ⊕ C))⊕ (A⊕ (BC ⊕ (B ⊕ C)))

↓ dist−1
ℓ ⊕ id

A (BC ⊕ (B ⊕ C))⊕ (A⊕ (BC ⊕ (B ⊕ C)))
=
A|(B|C)

And here is the matrix of N (α|), with annotation indicating
what each row and column corresponds to, and leaving the
cell empty when the morphism would be zero:

(A B) C A C B C A B A B C



(A B) C id
A B id
A C id
A id

B C id
B id
C id

We note that it is a permutation matrix, which we already
knew from Proposition B.19. In fact, we can rely on Propo-
sition B.19 to prove all the coherence laws of monoidal
categories just by checking that both sides of the equality cor-
respond to the same permutation. And said permutations can
easily be computed using Lemma B.16. We note that all the
unitors and associator are composed of natural isomorphisms,
and hence are natural isomorphisms.

We postponed the case of the symmetry, so we come back
to it. We simply define

σ| = σ ⊕ σ⊕

It is again a natural isomorphism as it is composed of natural
isomorphisms. The matrix of N (σ|) is:

A B A B()
B A σ
B id
A id

The coherence laws associated to the symmetry can simply be
checked by relying on the matrix notation and Lemma B.16
to compose those matrices.

E. Adding the Unit: the "⊕1" Category
In order to model the Unit of our graphical language, we

need to add ⊕1 to all of our objects.

Definition B.21. We define H⊕1 as the category with the
same objects as H and for morphisms f ∈ H⊕1(H,K) the
morphisms of H(H ⊕ 1,K ⊕ 1) of the form

f = g+(ιr ◦ πr)

for some g ∈ H(H⊕1,K⊕1). In matrix terms, it is a matrix
of H(H ⊕ 1,K ⊕ 1) where the bottom-right coefficient is of
the form c+ id for c ∈ H(1,1). The identity and composition
are the same as in H.

In particular, any morphism of H(H⊕1,K⊕1) of the form
h⊕ id is also of the form (h⊕ zero)+(ιr ◦ πr), so is in H⊕1.
A morphism of H⊕1 of the form h⊕ id is said functional15.

15This name reflects that we will interpret the ⊕1 on the domain as "the
morphism spontaneously computes something even when no input is given"
and the ⊕1 on the codomain as "the morphism does not output anything".
As such, functional morphisms are morphisms that output something if and
only if they had an input.

tA

A

|

:=
JAK

()JAK id

tA B

B A

|

:=

JAK JBK JAK JBK()
JBK JAK σ

JBK id
JAK id

t

s

A

A

|

:=
JAK

()JAK s · id

u

v
A B

A⊕B

}

~ :=

JAK JBK JAK JBK()
JAK id
JBK id

u

v

A B

A⊕B
}

~ :=

JAK JBK()
JAK JBK

JAK id
JBK id

u

v
A B

A B

}

~ :=
JAK JBK JAK JBK

()JAK JBK id

u

v

A B

A B
}

~ :=

JAK JBK()
JAK JBK id

JAK

JBK

t

A

A A|

:=
JAK JAK JAK JAK

()JAK id id

t A

A A

|

:=

JAK()
JAK JAK

JAK id
JAK id

t

A

|

:= ()JAK

tA|

:=
JAK

()

u

v
A

A′

}

~ :=
JAK

()JA′K JA ≈λρα A′K Je ◦ dK := JeK ◦ JdK Jd ∥ eK := m| ◦ (JdK | JeK) ◦m|

where JA ≈λρα A′K, m , m⊕, and m| always correspond to some permutation matrices.

Fig. 20: Matrix Semantics for the Functional Tensor-Plus Calculus

JfK⊕1 :=

JX K 1()
JYK JfK
1 id

whenever f ∈ FTPR(X ,Y)

t

1

|⊕1

:=

1()
J1K id
1 id

t 1|⊕1

:=
J1K 1

()1 id id

Je ◦ dK⊕1 := JeK⊕1 ◦ JdK⊕1 Jd ∥ eK⊕1 := (m| ⊕ id1) ◦ expand ◦ (JdK⊕1 JeK⊕1) ◦ expand−1 ◦ (m|′ ⊕ id1)

Fig. 21: Matrix Semantics for the Tensor-Plus Calculus

We define the natural isomorphism expand : (H⊕1) (K⊕
1) → (H|K)⊕ 1 as the following composition:

(H ⊕ 1) (K ⊕ 1)
distr−−−→ H (K ⊕ 1)⊕ 1 (K ⊕ 1)

distℓ⊕λ−−−−−→ (H K ⊕H 1)⊕ (K ⊕ 1)
(id⊕ρ)⊕id−−−−−−−→ (H K ⊕H)⊕ (K ⊕ 1)

m⊕

−−→ ((H K)⊕ (H ⊕K))⊕ 1

Proposition B.22. The category H⊕1 has a symmetric
monoidal structure, defined as H|K on objects and expand ◦
(f g) ◦ expand−1. All its structural morphisms – left-unitor,
right-unitor, associator, swap – are functional morphisms.

Proof. The symmetric monoidal structure follows from the
symmetric monoidal structure of (H, |, 0), by simply taking
λ|⊕ id, ρ|⊕ id, α|⊕ id, λ|⊕ id, σ|⊕ id as structural morphisms,

and by remarking that

expand ◦ ((f ⊕ id) (g ⊕ id)) ◦ expand−1 = (f |g)⊕ id

F. Adding the Unit: the Double Kleisli Category

This section explore an alternative way the Unit could have
been interpreted semantically, relying on a Kleisli construction
rather than the more ad hoc "⊕1" construction.

While Kleisli categories have an extensive literature [27],
we will focus in this section on a specific category, hence will
skip the background needed to define the general case. The
object of our attention is the Double Kleisli [28] – which is
a co-Kleisli category of a Klesil category – of H with respect
to _ 7→ (_ ⊕ 1), which is both a monad and co-monad.

Definition B.23. The category KcK-H is the category with
the same objects as H and with for morphisms KcK-H(H,K)

the morphisms of H(H ⊕ 1,K ⊕ 1), but with a significantly
different composition ◦KcK. For f ∈ KcK-H(H,K) and g ∈
KcK-H(K,L):

g ◦KcK f : H ⊕ 1
id⊕∆−−−→ H ⊕ (1⊕ 1)
α⊕−1

−−−→ (H ⊕ 1)⊕ 1
f⊕id−−−→ (K ⊕ 1)⊕ 1
α⊕

−−→ K ⊕ (1⊕ 1)
id⊕σ⊕

−−−−→ K ⊕ (1⊕ 1)
α⊕−1

−−−→ (K ⊕ 1)⊕ 1
g⊕id−−−→ (L⊕ 1)⊕ 1
α⊕

−−→ L⊕ (1⊕ 1)
id⊕∇−−−→ L⊕ 1

Or, as a picture, with α⊕ and α⊕−1 implicit:

f g

∆ ∇

H

1

L

1

The identity for this composition is id⊕zero : H⊕1 → H⊕1,
and more generally _ 7→ _⊕ zero is a faithful functor from H
to KcK-H.

Proof. The main property to prove is the associativity of the
composition.Using the properties of the biproduct we obtain:

∇ ◦ (∇⊕ id) = ∇ ◦ (id ⊕∇) ◦ α⊕

(∆⊕ id) ◦∆ = α⊕−1 ◦ (id ⊕∆) ◦∆

which directly entails the associativity of ◦KcK.

Proposition B.24. If H is cancellative, that is

f+h = g+h =⇒ f = g

then the categories H⊕1 and KcK-H are equivalent through
the following identity-on-objects equivalence. The morphism
f ∈ KcK-H(H,K) corresponds to f+(ιr◦πr) ∈ H⊕1(H,K).

Proof. We easily check that:

(id ⊕ zero)+(ιr ◦ πr) = id

(g+(ιr ◦ πr)) ◦ (f+(ιr ◦ πr)) = (g ◦KcK f)+(ιr ◦ πr)

G. Matrix Semantics

Using the matrix notations previously defined, and keeping
the convention of annotating rows and column, and leaving
an empty cell whenever the morphism of that cell would be
zero, we can rewrite Figures 5 and 6 into Figures 20 and 21.
We note that the isomorphism scal : R → H(1,1) is kept
implicit.

APPENDIX C
SOUNDNESS OF THE EQUATIONAL THEORY

In this appendix, we provide a proof of soundness of the
equational theory. And intuitive proof of soundness can be
done relatively easily, by looking at how data would flow
across the diagram before and after the application of an
equation. However, to formalize such an intuitive proof we
would need to define a token-based semantics and to prove
that this token-based semantics is equivalent to the categorical
semantics. Instead, we provide a more direct but maybe less
intuitive proof.

1) We start by all the equations easy to prove sound
in a direct way, including a couple of equations that
are technically superfluous (the bracketed ones) but are
useful as stepping stones, that is

• The equations on the left half of Figure 7, that is
(), (⊕), (⊥), [⊥], (0) and (σ).

• All the equations from Figure 8, that is (0), (⊕0),
(0), (00), (0), (0R), [0], [X⊕ 0], (ρ) and
[λ].

• All the equations of Figure 10 except the first
column, that is (), (⊕), (λρ), (ρ⊕), (λ⊕),
() and ().

• All the equations from Figure 11, that is [R×], (R1),
(R0), (R+), (R) and [⊕R].

2) We continue with a set of relatively difficult equations to
check directly, and we brute-force them by computing
the matrix semantics (see Figure 20) of both sides of the
equations and remarking that they are identical. More
precisely

• The equations (N) and (mix) from Figure 7.
• The equations (α) and (α⊕) from Figure 10.

3) We then prove a couple of powerful lemmas, which
allows us to derive the soundness of the remaining
equations for the functional language, that is

• The equations (X⊕) and (⊕→) from Figure 7.
• All the equations from Figure 9, that is (), (),

(⊕), (X⊕), (), (α), (R) and ().

4) We finish by handling the additional equations of the
equational theory for the full language, that is (ρ),
(10) and (Can) from Figure 12. Since [λ], [1+] and
[1 ∥] can be deduced from the others, we do not need
to prove their soundness.

Implicitly in all those steps is that the mirrored up-down
version of the equations can be proven sound in similar ways,
as the all the properties we use of H are also true in its dual
category.

A. The Easy Equations

Now, let us start with the following equations.

A B

≡

A B

(0)

A B

≡

A B

(⊕0)

A A

≡

A A

(0)

A

≡

A

(0)
A′

s

A

≡

A

(0R)
≡

(00)
A

Those are sound because in a semiadditive category, zero
satisfies for any f : zero◦f = zero, f◦zero = zero, zero f =
zero, and f zero = zero. In the remaining of the proof, those
properties of zero will be used implicitly.

A B

≡

A B

()

A BA B

A ⊕ B

≡

A ⊕ B

(⊕)

A ⊕ BA ⊕ B

Those are sound because in a semiadditive category:

πℓ ◦ ιℓ = id = πr ◦ ιr

A B

≡
(⊥)

A ⊕ B

A B

A ⊕ B

A A

≡
[⊥]

A

A A

A

Those are sound because in a semiadditive category:

πr ◦ ιℓ = zero

0

≡

0

(0)

0 0 A

A

≡
(σ)

A

A A A

Those are sound because σ| = σ ⊕σ⊕, and in a semiadditive
category all the morphisms on 0 → 0 are equal, (f⊕g)◦ ιr =
ιr ◦ g and σ⊕ ◦∆ = σ⊕.

A

A A

A

≡
(ρ)

≡
[λ]

A

A

The left one is sound because id|zero = zero ⊕ (id ⊕ zero)
and in a semiadditive category (f ⊕ g) ◦ ιr = ιr ◦ g and
∆ ◦ (id ⊕ zero) = id. The right one is sound for similar
reasons.

≡
[X⊕ 0]

A A

B

B B

B

≡
[X⊕ 0]

A A

A

B B

A

The left one is sound because zero|id = zero ⊕ (zero ⊕ id)
and in a semiadditive category πr ◦ ιr = zero⊕ id and ⊕ is a
bifunctor. . The right one is sound for similar reasons.

≡
[0]

A A

A B A BA B A B

≡
[0]

B B

The left one is sound because zero|id = zero ⊕ (zero ⊕ id)
and in a semiadditive category (f ⊕ g) ◦ ιℓ = ιℓ ◦ f .

A

A A

A

≡
(ρ⊕)

≡
(λ⊕)

A

A

00

A 1

1 A

≡
(λρ)

1 A

A 1

A

≡

A

()

A′′ A′′

A′

A

≡

A

()

A A

A′ B′

A B

≡

A B

A′ B′

()

A′ B′

A ⊕ B

≡

A ⊕ B

A′ B′

(⊕)

Those equations all rely on the generalisation of Mac Lane’s
coherence theorem stated in Proposition B.17, together with
the following facts:

• In a semiadditive category, (f ⊕ g) ◦ ιℓ = ιℓ ◦ f and
(f ⊕ g) ◦ ιr = ιr ◦ g.

• σ| = σ ⊕ σ⊕.
• id|zero = zero⊕(id⊕zero) and zero|id = zero⊕(zero⊕

id).
A

≡

A

[R×]
s × t

t

A A

s

A

≡

A

(R1)
1

A A

A

≡

A

(R0)
0

A A

A

≡

A

(R+)
s + t

A A

s t
s × t

A B

A B

≡
s t

A B

A B

(R) s

A B

A ⊕ B

≡
s s

A ⊕ B

A B

[⊕R]

Those equations all rely on scal being an isomorphism of
semirings, together with the fact that in a semiadditive cat-
egory, (f ⊕ g) ◦ ιℓ = ιℓ ◦ f , (f ⊕ g) ◦ ιr = ιr ◦ g and
∇ ◦ (f ⊕ g) ◦ ∆ = f+g, and additionally in H we have
distributivity hence s · (f ⊕ g) = (s · f ⊕ s · g).

B. The Hard Equations

The equations proven in this subsection rely on the associa-
tivity of | in H, which itself relies on the distributivity of

over ⊕. Leveraging those properties directly is not easy, hence
we instead rely on the matrix representation of the semantics,
given in Figure 20. When using the matrix representation,
we usually annotate the rows and columns for readability,
and while we will continue to do so, we will simplify those
annotations by omitting the J−K and the , hence “AB” stands
for “JAK JBK” and “A(BC)” stands for “JAK (JBK JCK)”.

A B

A B C

C

≡
(N)

A B C

A B C

On the left-hand-side, we have

(AB)C AC BC AB A B C()
A(BC) α

A id
BC id

◦

(AB)C AB C



(AB)C id
AC

BC

AB id
A

B

C id

On the right-hand-side we have

A(BC)()
A(BC) id

A

BC

◦
(AB)C

()A(BC) α ◦
(AB)C AB C

()(AB)C id

Both composition yield the same following matrix:

(AB)C AB C()
A(BC) α

A

BC

Hence the equation (N) is sound.

A B

A B

A B

A B

≡
(mix)

The matrices here are particularly large: up to 15 rows
and 15 columns. For clarity, the thick wires of the above
diagram will be represented by Greek letters (α for A and
β for B) in the row and column annotations. On the right-
hand-side we have the composition described in Figure 22,
where the matrices correspond respectively to the bottom two
contractions, the swap, the bottom tensor and plus, the top

((Aα)B)β (AB)β (αB)β (Aα)β Aβ αβ Bβ (Aα)B AB αB Aα A α B β()
AB id id id id
A id id
B id id

◦

((AB)α)β (Aα)β (Bα)β (AB)β Aβ Bβ αβ (AB)α Aα Bα AB A B αβ



((Aα)B)β f
(AB)β id
(αB)β g
(Aα)β id

Aβ id
αβ id
Bβ id

(Aα)B h
AB id
αB σ
Aα id
A id
α id
B id
β id

◦

(AB)α (AB)β AB α β



((AB)α)β

(Aα)β

(Bα)β

(AB)β id
Aβ

Bβ

αβ

(AB)α id
Aα

Bα

AB id
A

B

α id
β id

◦

((AB)α)β (Aα)β (Bα)β (AB)β Aβ Bβ αβ (AB)α Aα Bα AB A B α β


(AB)α id
(AB)β id

AB id
α id
β id

◦

((Aα)B)β (AB)β (αB)β (Aα)β Aβ αβ Bβ (Aα)B AB αB Aα A α B β



((AB)α)β f
(Aα)β id
(Bα)β g
(AB)β id

Aβ id
Bβ id
αβ id

(AB)α h
Aα id
Bα σ
AB id
A id
B id
α id
β id

◦

AB A B



((Aα)B)β

(AB)β

(αB)β

(Aα)β

Aβ id
αβ id
Bβ

(Aα)B

AB id
αB id
Aα

A id
α id
B id
β id

where f = m ◦ (id σ id) ◦m , g = σ id and h = m ◦ (id σ) ◦m .

Fig. 22: Semantics of the right-hand-side of (mix).

tensor and plus, and the top two contractions. When computing
the composition, we obtain the identity matrix, hence (mix) is
sound.

A (B C)

A B C A B C

A (B C)

≡
(α)

On the left-hand-side, we have

A(BC) A BC



(AB)C α −1

AC

BC id
AB

A id
B

C

◦

A(BC)()
A(BC) id

A

BC

On the right-hand-side we have

(AB)C AB C



(AB)C id
AC

BC

AB id
A

B

C id

◦

(AB)C()
(AB)C id

AB

C

◦
A(BC)

()(AB)C α −1

Both composition yield the same following matrix:

A(BC)



A(BC) α −1

AC

BC

AB

A

B

C

Hence the equation (α) is sound.

A ⊕ (B ⊕ C)

A B C A B C

A ⊕ (B ⊕ C)

≡
(α⊕)

On the left-hand-side, we have

AB AC A B C



(AB)C

AC id
BC

AB id
A id
B id
C id

◦

A B C


AB

AC

A id
B id
C id

On the right-hand-side we have

AC BC A B C



(AB)C

AC id
BC id
AB

A id
B id
C id

◦

A B C


AC

BC

A id
B id
C id

◦

A B C()
A id
B id
C id

Both composition yield the same following matrix:

A B C



A(BC)

AC

BC

AB

A id
B id
C id

Hence the equation (α⊕) is sound.

C. Finishing the Functional Fragment

We can now prove the soundness of Lemma D.4, that is:

Lemma C.1. Given two diagrams d, e : X → Y satisfying
the following:

• They are connected planar graphs, and in particular do
not include any Swap.

• It is composed only of Identities id, Tensors , upside-
down Tensors, and Adapters .

Then each can be rewritten into the other using only (α),
(), (N), (), ()and (). It follows that this rewriting
is sound.

Proof. See Lemma D.4 for the existence of the rewriting.
All the listed equations have been proven to be sound in the
previous subsections, so this rewriting is sound.

We will need two lemmas, which allows us to decompose an
equation difficult to prove sound into three (or seven) equations
easier to prove sound. They both derive from the fact that in
a semiadditive category, if f ◦ ιℓ = g ◦ ιℓ and f ◦ ιr = g ◦ ιr
then f = g.

Lemma C.2. Given two diagrams d, e : A ∥ B → X , then
JdK = JeK if and only if each of the following hold:

d

· · ·

A B

X

e

· · ·

A B

X

=

u

wwww
v

}

����
~

u

wwww
v

}

����
~

d

· · ·

A

X

e

· · ·

A

X

=

u

wwww
v

}

����
~

u

wwww
v

}

����
~

d

· · ·

B

X

e

· · ·

B

X

=

u

wwww
v

}

����
~

u

wwww
v

}

����
~

Proof. We start by noting that JA ∥ BK = JAK | JBK =
(JAK JBK) ⊕ (JAK ⊕ JBK). Since we are in a semiadditive
category, JdK = JeK if and only if:

• JdK ◦ ιℓ = JeK ◦ ιℓ
• JdK ◦ ιr ◦ ιℓ = JeK ◦ ιr ◦ ιℓ
• JdK ◦ ιr ◦ ιr = JeK ◦ ιr ◦ ιr

Each of those three items directly correspond to one of the
equations, in order.

Lemma C.3. Given two diagrams d, e : A ∥ B ∥ C → X ,
then JdK = JeK if and only if each of the following hold:

d

· · ·
X

e

· · ·
X

=

u

wwwwww
v

}

������
~

u

wwwwww
v

}

������
~

(A B) C (A B) C

d

· · ·
X

e

· · ·
X

=

u

wwww
v

}

����
~

u

wwww
v

}

����
~

A C A C

d

· · ·
X

e

· · ·
X

=

u

wwww
v

}

����
~

u

wwww
v

}

����
~

B C B C

d

· · ·
X

e

· · ·
X

=

u

wwww
v

}

����
~

u

wwww
v

}

����
~

A B A B

d

· · ·

A

X

e

· · ·

A

X

=

u

wwww
v

}

����
~

u

wwww
v

}

����
~

d

· · ·

B

X

e

· · ·

B

X

=

u

wwww
v

}

����
~

u

wwww
v

}

����
~

d

· · ·

C

X

e

· · ·

C

X

=

u

wwww
v

}

����
~

u

wwww
v

}

����
~

Proof. We start by noting that JA ∥ B ∥ CK =
(JAK | JBK)| JCK which can be unfolded into

(((JAK JBK)⊕ (JAK ⊕ JBK)) JCK)
⊕(((JAK JBK)⊕ (JAK ⊕ JBK))⊕ JCK)

Since we are in a semiadditive category and additionally is
distributive over ⊕, JdK = JeK if and only if:

• JdK ◦ ιℓ ◦ (ιℓ id) = JeK ◦ ιℓ ◦ (ιℓ id)
• JdK◦ιℓ ◦(ιr id)◦(ιℓ id) = JeK◦ιℓ ◦(ιr id)◦(ιℓ id)
• JdK◦ιℓ◦(ιr id)◦(ιr id) = JeK◦ιℓ◦(ιr id)◦(ιr id)
• JdK ◦ ιr ◦ ιℓ ◦ ιℓ = JeK ◦ ιr ◦ ιℓ ◦ ιℓ
• JdK ◦ ιr ◦ ιℓ ◦ ιr ◦ ιℓ = JeK ◦ ιr ◦ ιℓ ◦ ιr ◦ ιℓ
• JdK ◦ ιr ◦ ιℓ ◦ ιr ◦ ιr = JeK ◦ ιr ◦ ιℓ ◦ ιr ◦ ιr
• JdK ◦ ιr ◦ ιr = JeK ◦ ιr ◦ ιr

Each of those seven items directly correspond to one of the
equations, in order.

Now, we can tackle the remaining equations. For that, we
note that we can freely rewrite diagrams using equations that
we already proved to be sound.

A B A B

A ⊕ B A ⊕ B A ⊕ B A ⊕ B

≡
(⊕)

A A

A A

A

≡
()

A

A A

To prove the soundness of those, we use Lemma C.2, and
then rely on the already proven soundness of (⊥), [⊥], (⊕0),
(0), [λ], (ρ) and (X⊕).

s

AA

A

≡
ss

A

AA

(R)

A A

A′

≡

A′

A A

()

with A ≈λρα A′

To prove the soundness of those, we use Lemma C.2, and
then rely on the already proven soundness of [⊥], [λ],
(ρ), (0R), (0), (R) and ().

A B

A B A B

A B

A B A B

≡
()

≡
(X⊕)

A B C D

A B C D

A B C D

A B C D

≡
(⊕→)

A B

A ⊕ B

A B

A ⊕ B

(A ⊕ B) 1

A 1 B 1

To prove the soundness of those, we use Lemma C.2, and then
rely Lemma C.1 and on the already proven soundness of (⊥),
[⊥], (0), (⊕0), (0), (0), [λ], (ρ), [0] and (X⊕).

≡
(X⊕)

A A

A

A A

A

BB

B BA B

A A

A B

A A

≡
()

B B

A

AAA AAA

A

≡
(α)

To prove the soudness of those, we use Lemma C.3, and then
rely Lemma C.1 and on the already proven soundness of (⊥),
[⊥], (0), (⊕0), (0), (0), [λ], (ρ), [0] and (X⊕).

D. The Full Language

In this section, was will use rely on the matrix representation
given in Figure 21.

A

A

≡
(ρ)

A

A

1

On the left-hand-side we have
JAK J1K JAK J1K 1()

JAK ρ id
1 id id

◦

JA 1K 1


JAK J1K id
JAK

J1K

1 id

◦
JAK 1()

JA 1K ρ −1

1 id

which simplifies to the identity matrix. Hence (ρ) is sound.

≡
(10)

1

On the left-hand-side we have

J1K 1

()1 id id ◦
1()

J1K

1 id

which simplifies to the identity 1-by-1 matrix, hence (10) is
sound. Last but not least, we consider:

s

1

1

t

1

1

≡
(Can)

For any s, t ∈ R such that s+ 1 = t+ 1.

On the left-hand-side, we have the composition described
in Figure 23, where the matrices correspond respectively to
the bottom unit, the bottom contraction, the swap with a
scalar, the top contraction, and the top unit. When computing
the composition, we obtain the following (we note that on
1 1→ 1 1, we actually have σ = id):

J1K 1()
J1K id id
1 id (s+ 1) · id

Similarly, if we compute the matrix for the right-hand-side,
we obtain the following:

J1K 1()
J1K id id
1 id (t+ 1) · id

Both are equal whenever s+1 = t+1, hence (Can) is sound.

J1K J1K J1K J1K 1()
J1K ρ id
1 id id

◦

J1K J1K J1K J1K J1K J1K J1K J1K J1K J1K J1K J1K 1


J1K J1K id id
J1K id
J1K id id
1 id

◦

J1K J1K J1K J1K J1K J1K J1K J1K J1K J1K J1K J1K 1



J1K J1K J1K s · σ id
J1K J1K s · id
J1K J1K s · id
J1K J1K σ

J1K id
J1K id
J1K s · id
1 id

◦

J1K J1K J1K J1K 1



J1K J1K J1K

J1K J1K id
J1K J1K

J1K J1K id
J1K id
J1K id
J1K id
1 id

◦

J1K 1


J1K J1K ρ −1

J1K id
J1K id
1 id

Fig. 23: Semantics of the left-hand-side of (Can).

AB

A

≡
[σ]

A

B A

B BA

A B

B

≡
[X]

A B

A B

1

AB

A

≡
[σ⊕]

A

B A

B B

≡
[X⊕→X]

A B

A B

A B

A B

1

A A

A

≡
[→⊕]

A A

A

A ⊕ B
A ⊕ B

A ⊕ B
A ⊕ B

≡
(⊕)

A B A B

≡
[X⊕ ⊕]

CB

A

CA

A

BA

B ⊕ C B ⊕ C

≡
[X⊕ ⊕]

A B

A ⊕ B

A B

A ⊕ B

CC

C C

≡
[→]

A B
A B

A B

A B
A B

A B

1

≡
[⊕ →]

A C
B C

A ⊕ B C

A C
B C

A ⊕ B C

1

A B

A B

1≡
[X →]

≡
[X⊕→]

A B

A B

≡
[R⊕ ⊕]

s

A

A

B

B

s

A

A

B

B

≡
[R⊕ ⊕]

s

A

A

B

B

s

A

A

B

B

Fig. 24: Additional Induced Equations for the Tensor-Plus Calculus

APPENDIX D
NOTABLE LEMMAS FOR THE EQUATIONAL THEORY

In this appendix, we work on a collection of useful lemmas
and equations. In order to distinguish them from the equations
of Figures 7 to 12, we name the new equations with squared
brackets [−] instead of parentheses (−).

A. Induced Equations

From the equations of Figures 7 to 11, we can obtain a
few additional equation, which we list in Figures 24 and 25,
and which can be proved as follows. Except for [X →],
[1+] and [1 ∥], all the equations are proved in the Functional
fragment of the language.

For [λ], we simply use (σ) then (ρ).
For [X] we start from the right-hand-side:

≡
(N)

≡
()

≡
()
()

For [σ]:

≡
[X]

≡
[X]

≡
(λρ)

=
()

The equation () here is the mirrored left-right of the
equation () in Figure 9. We keep the same name for conve-
nience. However, deducing one from the other is surprisingly
non-trivial:

≡
[σ]

≡
()

()

≡
()

≡
[σ]

≡
()

(σ) ()

The equations [0] are both proved symmetrically:

≡
(R0)

1

0(R1)
≡

(R)

0

≡
(R)

≡
(0)
(00)

The equations [X⊕ 0] are both proved symmetrically:

≡
(mix)

AA

A

BB

A

A B

A

≡

(0)
[0]
(0)
[λ]

For [⊕R], we start from the right-hand-side:

s

A B

A ⊕ B

s s

A ⊕ B

A B

(⊕→)
≡

A ⊕ B

A B

s s

(R)

≡

(R)
(R1)
(R)

(R)

A ⊕ B

A B

s
≡

(R1)

(R)
(⊕→)

For [→⊕], we start from the right-hand-side:

A A

A

≡

()

A A

A

()

()

A A

A

0A

A A

A

0A

(⊕)

A A

A

0A

≡
()
()

()

≡
(⊕)

≡
(⊕) (⊕)

(⊕)

A A

A

≡

0A

(⊕)

For [⊥]:

A A

A

≡

A A

A

≡
(⊥)[→⊕]

A A

A

≡
(0)
(ρ)

A A

A

For [→], we start from the right-hand-side:

≡
[X]

≡
()

≡
()

≡
()

For [⊕ →]:

A A

≡
[⊥]

A

A A

A

A B

BB

A B

BB

()

AA

(X⊕)

BB

B

BB

B

A A

AA

≡ ≡

AA

[R×]
s × t

t

A A

s

≡
s

A B

A ⊕ B

s s

A ⊕ B

A B

[⊕R]
≡

≡
[X⊕ 0]

A A

B

B B

B A

A

[λ]

A

≡

A

[0]

B

≡

B

[0]

A B A BA B A B

≡
[X⊕ 0]

A A

A

B B

A A

A

≡

≡ ≡
s t

1 1

s + t
[1+]

s t s×t
+s+t

[1 ∥]

Fig. 25: Reminder of the Induced Equations for the Tensor-Plus Calculus

≡
(⊕→)

≡
()
(α)

≡
()
()

For [R×], we start from the right-hand-side:
AA

()

s × t

t

A A

s

≡

A

t

A

s

(N)
A 1 ≡

(R)

A

A

s

1 t

1
≡

(R1)
(R)
(N)
()

The equations [X⊕→X] and [X⊕→] follow from [⊕ →
], but we postpone their proof to Lemmas D.7 and D.8 as it

is much more readable using "spider" notations.
Similarly, we postpone the equation [X →] to

Lemma D.8.
For [σ⊕]:

≡
[X⊕→X]

≡
(λρ)
()

= ≡
[X⊕→X]

The equation (X⊕) here is the mirrored left-right of the
equation (X⊕) in Figure 9, we keep the same name for
convenience. One implies the other through [σ⊕] and (σ).

Similarly, the equation [X⊕0] here is the mirrored left-right
of the equation [X⊕ 0] in Figure 8, we keep the same name
for convenience, and one implies the other through [σ⊕].

The equations [X⊕ ⊕] are a variation over (X⊕). We
postpone the their proof to Lemma D.10 as they are much
more readable using "spider" notations. We postpone similarly
the proof of [R⊕⊕] to Lemma D.9.

The equation (⊕) is a variation over (⊕), and we
postpone its proof to Lemma D.20 as it is much more readable

using "spider" and "disjunction" notations.
The proof of equations [1+] and [1 ∥] are also postponed

to Lemma D.23.

B. The n-ary Nodes

Definition D.1. We define the n-ary Tensor for n ≥ 1 (with
n = 1 being the identity):

.

:=

n
i=1 Ai

A1 A2 An−1An A1 A2 An−1An

n
i=1 Ai

Then the n-ary Plus for n ≥ 1 (with n = 1 being the identity):

.

:=⊕n
i=1 Ai

A1 A2 An−1An A1 A2 An−1An

⊕n
i=1 Ai

And lastly the n-ary Contraction for n ≥ 1 (with n = 1 being
the identity):

.

:=

A

A A A A A A A A

A

Most equations generating ≡ can be generalized naturally
to the n-ary case by iterating the binary case. We formally
prove some of the non-trivial ones.

Lemma D.2.

≡
(⊕→)

1

≡
[⊕ →]

1

≡
[X⊕→X]

1 ≡
[X →]

1

Proof. We proceed inductively, starting with the second one
[⊕ →]:

• n = 1 follows from (), () and [X].
• n = 2 is the regular [⊕ →].
• For n > 2, we simply use the (n− 1)-ary case, then the

binary case, then we undo the case (n− 1)-ary case.

We can now prove the first one (⊕→):

• n = 1 follows from () and ().
• n = 2 is the regular (⊕→).
• For n > 2, we start by creating a (n − 1)-Contraction

with the (n − 1)-ary case, then we create the missing
binary Contraction using the regular, and lastly we have
to eliminate the additional Tensors. For that we can use
(N) to set up a use of [⊕ →].

Then, since [X⊕→X] is proved using [⊕ →] and (⊕→
) (see Lemma D.7), we can generalize it to the n-ary case

without issues. The proof for [X →] given in Lemma D.8
also can also be generalised easily.

C. The Spider

Definition D.3. We define the (n,m)-spider for n ≥ 1, m ≥ 1
and n

i=1 Ai ≈λρα
m
j=1 Bj:

A1 An

B1 Bm

. . .

. . .

:=

A1 An
. . .

B1 Bm

. . .

We note that can be seen as a (2, 1)-spider by adding a
trivial with the equation (), and is directly a (1, 1)-spider.

Lemma D.4. There exists at most one morphism in
FTPR

≡(X ,Y) such that its diagram is a connected planar
graph with for only nodes the and . In other words, we
have the following equation and its up/down mirrored version:

≡

n + n′ ≥ 1

m + m′ ≥ 1

n ≥ 1 n′ ≥ 0

m ≥ 0 m′ ≥ 1

k ≥ 1 []

Proof.

≡
(α)

≡
()

≡
(N)

≡
()

≡
(α)

()

Lemma D.5. The equation [] from Lemma D.4 already
generalizes the equations (), (), (α), (), (N), and
[X]. We continue this list by generalizing a few additional
ones:

n ≥ 1

m ≥ 1

≡
[]

n ≥ 1

m ≥ 1

≡
[0]

n ≥ 1

m ≥ 1

≡
[λρ]

1 n ≥ 1

m ≥ 1

1

n ≥ 1

m ≥ 1

≡
[R]

s1 sn n ≥ 1

m ≥ 1t1 tm

with s1 × · · · × sn = t1 × · · · × tm.

Proof. For [], we simply unfold the definition of the spider,
and iterate (), then use () then iterate ().

For [0], we also unfold the definition of the spider, iterate
[0], then use (0) then iterate (0).

For [λρ], after unfolding the definition of the tensor, we
use (α) and (λρ) to swap the wire of color 1 with the
other wires one by one, using () and () to eliminate the

that appeared at each use of (λρ).
For [R], after unfolding the definition of the spider, iterate

(R), then use (R) then iterate (R).

Lemma D.6. In order to prove lemma D.7, we need the
following preliminary result:

A B

A B 1

≡

A B

A B 1

Proof.

≡
[λρ] []

≡
(X⊕)

≡
[]

≡
(X⊕)

≡
[→⊕]

≡
[λρ]

And we conclude by using [λρ].

We can now prove the first, second and third induced
equations that were postponed. Since [X⊕ →] is the
composition of [X⊕→X] and [X →], it follows from
the next two lemmas that prove both of them.

Lemma D.7.

≡
[X⊕→X]

A B

A B

A B

A B

1

Proof.

≡
(⊕→)

≡
[]

≡
[⊕ →]

And we conclude by using Lemma D.6 and [λρ].

Lemma D.8.
A B

A B

1

A B

A B

1≡
[X →]

Proof.

≡
(ρ)

≡
[]

≡
(λρ)
[]

≡
(λρ) []

≡
(λρ)
[]

≡

[λ]
(ρ)
()

≡
[]

Lemma D.9.

≡
[R⊕ ⊕]

s

A

A

B

B

s

A

A

B

B

Proof.

≡
[X⊕→X]

s

A

A

B

B

s

A

A

B

B
s

A B

A B

≡

(R)
(R1)
(R)

A B

A B

s

≡
[X⊕→X]

Lemma D.10.

≡
[X⊕ ⊕]

A B

A ⊕ B

A B

A ⊕ B

CC

C C

And its mirrored left/right.

Proof.

≡
(X⊕)(⊕→)

≡
[]

≡
(X⊕)(X⊕)

≡
[]

≡
[X⊕ ⊕](⊕→)

For the mirrored equation, we use the same proof but mirrored.

D. The Compact Closure

While we do not have a Cup and a Cap as generators in
order to “bend” wires, we can define the Cap inductively as
follows, and the Cup using the up-down mirrored definitions:

:=

A B

A B
:=

A B

A⊕B

:=
1 1 1

:=
0 0 0

Since they rely on Unit, they are not part of FTPR. We
will now the equational theory ensures that they satisfy the
snake equations, in other words that TPR

≡ is a compact closed
category. Before that, we need to prove the following lemma:

Lemma D.11.

≡

A

B

A B A

B

A B

Proof. We proceed inductively over A. For A = 0, it follows
from [0]. For A = 1, it follows from []. For the inductive
case A = B C, it follows from [] and the induction
hypothesis. For the inductive case A = B ⊕ C, it follows
from (⊕→), [] and the induction hypothesis.

Proposition D.12. The following equations can be deduced
from the equational theory:

A

A

≡ ≡

AA

AA

Proof. We proceed inductively over A. For A = 0, it follows
from (00). For A = 1, it follows from []. For the inductive
case A = B C, it follows from [], Lemma D.11 and the
induction hypothesis. For the inductive case A = B ⊕ C, it
follows from [X⊕ → X], Lemma D.11 and the induction
hypothesis.

E. The Disjunctive Collection of Wires
Definition D.13. We define a disjunction of wires A1, . . . , An

for n ≥ 1:
A1 An

A1 An

. . .

. . .

:=

A1 An
. . .

A1 An

. . .

Note the absence of in this definition.

Lemma D.14. We have a property of idempotence:
n + m + k ≥ 1

≡

k ≥ 0m ≥ 1n ≥ 0

n + m + k ≥ 1

n + m + k ≥ 1

Proof. We simply use (α⊕), (⊕), and (⊕) multiple times
each.

Lemma D.15. As a direct application of the previous lemma,
we can reorder two binary disjunctions:

B

A

≡

A C

B C

B

A

A C

B C

Proof. We use [X⊕→X] to create nodes, then lemma D.4
swap the two and then [X⊕→X] again to make the nodes
disappear.

Lemma D.16. A n-ary disjunction of wires is equivalent to
the collection of all the binary disjunctions of wires:

A1 An

A1 An

. . .

. . .

≡

A1 AnA2 A3

A1 AnA2 A3

. . .

. . .

We recall that using [σ⊕], the left-hand-side and right-hand-
side of a binary disjunction can be swapped, and using the
Lemma D.15 the order in which the binary disjunctions are
made does not matters.

Proof. We unfold the definition of a disjunction, and then
iterate the use of [X ⊕ ⊕] to push the "X" at the middle
upward, this create the binary disjunctions between An and
every other wire, and a new "X" at the middle, which allows
you to reiterate the same procedure.

Lemma D.17. We can generalize [→⊕]:

≡

n ≥ 1n ≥ 1

Proof. This is simply using Lemma D.16, [→⊕] and (α).

Those last two lemmas give us the tools that lacked to
generalize Lemma D.6 to the n-ary case as follows:

Lemma D.18.

≡

n ≥ 1 n ≥ 1

A1 An 1

A1 An A1 An

A1 An 1

It follows that [X⊕→X], [X →] and [X⊕→] can be
generalised to the n-ary case.

Proof. We follow the same proof as for Lemma D.6 and its
following lemmas, but using the n-ary version of the equations
when necessary.

To tackle the last equation that was postponed, we first need
this preliminary lemma:

Lemma D.19. The disjunction of wires is transparent with
respect to most generators of FTPR.

≡

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

≡

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

≡

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

≡

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

≡

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

≡

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

s

s

The interaction of a disjunction of wires with Tensors is
slightly different, as we have the following equation and its
mirrored left/right:

≡

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

m ≥ 0n ≥ 0

Proof. For all of them, we start by using Lemma D.16, and
then, we just need the various generator to go through the
binary disjunction.

• For the Contraction, we use (X⊕)
• For the Null, we use [X⊕ 0].
• For the Plus, we use [X⊕⊕].
• For the Swap, we use [σ⊕].
• For the Adapter, we use (⊕).
• For the Scalar, we use [X⊕→X] from Lemma D.2,

[R] and (R1).
• For the Tensor, we use [X⊕→X] from Lemma D.2

and [R].

We can now prove the last induced equation of the func-
tional fragment that was postponed.

Lemma D.20.
A ⊕ B

A ⊕ B
A ⊕ B

A ⊕ B

≡
(⊕)

A B A B

Proof. We simply use (⊕) and then Lemma D.19.

We can also deduce the following equation, which we will
use in Section H-B.

Lemma D.21.

≡

A ⊕ B A ⊕ B

A A A AB B B B

Proof.

≡ ≡

=

(X⊕)

≡

D.20

D.19
≡

D.14
D.19
(X⊕)

Now, only remain equations relying on the unit. For that,
we need one preliminary lemma:

Lemma D.22. We have the following equation:

≡

1 1 1 1

Proof.

≡
(mix)

≡
[X⊕→]

≡
D.19
D.16

≡

[λ]
()

D.19
(σ)

≡
[X⊕→]

where on the last step, we use the ternary version of [X⊕→]
from Lemma D.18.

We can now prove [1+] and [1 ∥]:

Lemma D.23. We have the following equation:

≡ ≡
s t

1 1

s + t
[1+]

s t s×t
+s+t

[1 ∥]

Proof.

≡
s t

1 1

s + t
D.22

s t

1

≡

(R)

(α)

1

(R)
s × t

ts ≡

[⊥]

(ρ)

(0R)

(R+)

(0)

≡
s t D.22

s t
≡

(R)
(R)

s × t

ts

≡
s×t
+s+t

D.19
s × t

ts
≡

[X⊕→]
(ρ)

s × t

ts
(α)

[→⊕]

[→⊕]

(R)
(ρ)
[1+]
≡

F. Conjunction of Disjunctions of Wires

Definition D.24. We define the conjunction of disjunctions of
wires (A1, . . . , Aa), (B1, . . . , Bb), . . . , (Z1, . . . , Zz), for a ≥
1, b ≥ 1, etc, z ≥ 1 and any number n ≥ 2 of such groups:

A1 Aa

A1 Aa

. . .

. . .

:=

. . .

. . .

B1 Bb

B1 Bb

. . .

. . .

Z1 Zz

Z1 Zz

. . .

. . .

. . .

. . .

. . .

.

. . .

. . .

. . .
A1 Aa B1 Bb Z1 Zz

A1 Aa B1 Bb Z1 Zz

Note the absence of in this definition.

Lemma D.25. We have a property of idempotence:

a≥1

a≥1

i≥1 p≥1 z≥1

z≥1i≥1 p≥1

≡

a≥1

a≥1

i≥1 p≥1 z≥1

z≥1i≥1 p≥1

≡

n + m + k ≥ 1 n + m + k ≥ 1

n + m + k ≥ 1m ≥ 1 k ≥ 0n ≥ 0

Proof. We simply use (α⊕), (⊕), (⊕) and their equivalent
for , multiple times each.

In order to prove lemma D.27, we need the following
preliminary result:

Lemma D.26.

≡

1 1

A1 An

A1 An

A1 An

A1 An

Proof. We use the n-ary version of (⊕→), followed by []
to set up the use of the n-ary version of [⊕ →], and we
conclude with Lemma D.18.

Lemma D.27. A conjunction of disjunctions of wires can be
expanded as follows:

a≥1

a≥1

b≥1 z≥1

z≥1b≥1

a≥1

a≥1

b≥1 z≥1

z≥1b≥1

≡

Proof. We simply use [] to set up the use of Lemma D.26,
which we use on each group of the conjunction of disjunctions.

Lemma D.28. A conjunction of disjunctions of wires can be
expanded as follows:

a≥1

a≥1

z≥1

z≥1

≡

a≥1

a≥1

z≥1

z≥1

Where on the right-hand side, there are a × · · · × z spiders,
each corresponding to the selection of exactly one wire from
each group.

Proof. We use Lemma D.27, and then resolve interactions of
the Contractions with everything, that is using (), (),
and (). Since () generates a binary disjunction of wires,
we also need [X⊕ → X] to push those disjunction to the
top of the diagram, and Lemma D.16 to recompose a bigger
disjunction of wires.

We can generalize Lemma D.19 to conjunctions of disjunc-
tions.

Lemma D.29. The disjunction of wires is transparent with
respect to most generators of FTPR:

≡

≡

≡

≡

≡

s

s

≡

The interaction with Tensors is slightly different, as we have
the following equation and its mirrored left/right:

≡

Proof. For all of them, we start by using Lemma D.27, and
then, we just need the various generator to go through the
binary disjunction.

• For the Contraction, we use []
• For the Null, we use [0] and (0).
• For the Plus, we use (⊕→) and [].
• For the Swap, we use (σ).
• For the Adapter, we use [].
• For the Scalar, we use [R] and (R1).
• For the Tensor, we use [].

Lemma D.30. In Lemmas D.19 and D.29, whenever a we had
an interaction with Tensors, we had to choose between left and
right, but this choice is in fact not always necessary:

≡

≡

Proof. For the first one, we start from the right-hand-side and
use Lemma D.27. This puts us in a situation where we can
use the n-ary version of [X⊕→X] (which is proved in the
same way as its binary version), and the result is exactly the
left-hand-side of the first equation.

For the second one, we have a conjunction of disjunctions
and the s arrive on the i-th group. We use Lemma D.27
unless i = 1 in which case we use a mirrored left/right version
of that lemma (which is proved in the same way). We then
use the following rewriting sequence:

≡
[]

≡
[]

≡
[]

Lemma D.31. Lastly, we have a property that generalizes
the equation (mix) by stating that two disjunctions in parallel
is that same as a conjunction of dijunctions "+" a greater
disjunction:

n≥1

n≥1

m≥1

m≥1

≡

n≥1

n≥1

m≥1

m≥1

Proof. We simply unfold the definition of the disjunction, use
(mix) on the two wires in the middle, then use (⊕) to push
the contractions toward the inputs/outputs, and then [X⊕⊕],
(α⊕), (⊕), and Lemma D.16 to rearrange the ⊕ in order to be
able to recreate a disjunction and a conjunction of disjunctions.

APPENDIX E
EXISTENCE OF THE NORMAL FORM

In this appendix, we prove that every morphism can be put
in normal form. The result of completeness (Theorem IV.2)
is an immediate consequence of the result of this appendix
combined with the result of the next appendix (that two normal
forms with the same semantics are necessarily equal).

A. Converting the Objects

It is a well known result in real vector species that any vector
space is isomorphic to Rn where n is its dimension. We could
generalize this result and build an isomorphism between any
object X and 1 ⊕ · · · ⊕ 1 with a number of 1 equal to the
"dimension" of X , however it will be more practical to build
an "almost"-isomorphism between X and 1 ∥ · · · ∥ 1 instead.

Definition E.1. For any object X , we define its dimension
dim(X) as follows:

dim(1) := 1 dim(A B) := dim(A)× dim(B)

dim(0) = dim(∅) := 0 dim(A⊕B) := dim(A)+dim(B)

dim(X ∥ B) := dim(X)× dim(B) + dim(X) + dim(B)

We define the diagrams isoX : X → 1 ∥ · · · ∥ 1 (with dim(X)
copies of 1) inductively on the object X as follows:

iso1 := isoA B :=

isoA isoB

iso0 := isoA⊕B := isoA isoB

iso∅ := isoX∥B :=

isoX isoB

The diagrams isoTX : 1 ∥ · · · ∥ 1 → X are defined
symmetrically.

Since this "almost"-isomorphism between X and 1 ∥ · · · ∥ 1
comes from an isomorphism between X and 1⊕ · · · ⊕ 1, the

wires coming out of the "almost"-isomorphism are actually
in disjunction. The definition of the isomorphism on X ∥ B
is asymmetric, however this asymmetry disappear when we
quotient by ≡, as shown in the following lemma.

Lemma E.2. For every object X and every color B, there
exists a permutation of wires σ0 such that:

isoX∥B≡isoB∥X

σ0

Proof. We proceed by induction over X . If X = ∅, then the
result is trivial. If X = Z ∥ D, then we follow this procedure:

1) Since, B ∥ X = (B ∥ Z) ∥ D so we unfold the
definition of iso(B∥Z)∥D.

2) We can then use the induction hypothesis to transform
isoB∥Z into isoZ∥B .

3) Unfolding the definition of isoZ∥B , we obtain:

isoX isoB

isoD

σ0

4) We use (σ), [λρ] and Lemma D.19 to push the
permutation σ0 to the very bottom. We call the new
permutation at the bottom σ1

5) We use [σ⊕] and Lemma D.19 to push the disjunction
downward and Lemma D.14 to eliminate it.

6) We use [] to push the Tensors downward.
7) We can then swap isoD and isoB and push this swap

downward using (σ), [σ⊕], [λρ] (together with ())
and []. This swap will merge with σ1 to yield a new
permutation σ2 at the bottom.

8) We would like to conclude to refold the definition of
isoZ∥D, so we need to do the step 6, 5, and 4 in reverse
beforehand.

9) Lastly, we can refold the definition of isoX∥B .

Lemma E.3. For every color A, we have:

isoA
≡

isoA

Proof. We proceed by induction over A.

• If A = 1 or A = 0, the result is trivial.
• If A = B⊕C, the results follows from Lemma D.19 and

the induction hypothesis on isoB and isoC .
• If A = B C, the results follows from Lemma D.19

(going to the left of every Tensor) and the induction
hypothesis on isoB (we do not use need induction hy-
pothesis on isoC).

Lemma E.4. The previous lemma generalizes to conjunctions
of disjunctions, so we have for every color A:

isoA
≡

isoA

Proof. The proof is the same as for Lemma E.3, using
Lemma D.29 instead of Lemma D.19.

Lemma E.5. For any color A, isoA is duplicated by Contrac-
tions and erased by Null:

isoA

isoA
≡

isoA

isoA
≡

Proof. For both, we proceed inductively on A.

• For A = 0 we use [λ] for the duplication and (00) for
the erasure.

• For A = 1 we use [→⊕] for the duplication and the
erasure is trivial.

• For A = B ⊕ C, then for the duplication we use (⊕),
the induction hypothesis and Lemma E.3, while for the
erasure we use (⊕0) and the induction hypothesis.

• For A = B C, then for the duplication we use (),
the induction hypothesis and (α), while for the erasure
we use (0), the induction hypothesis and [λ].

For the duplication, we use (), (α) and Lemmas D.14
and D.19.

For the erasure we use (0), (0R), [λ], (ρ) and Lem-
mas D.14 and D.19.

Before proving Proposition E.7, we need the following
preliminary lemma:

Lemma E.6. We have the following equation:

≡

Which implies:

≡

Which can be generalized as follows:

n ≥ 1 m ≥ 1

nm ≥ 1

nm ≥ 1

≡

nm ≥ 1

nm ≥ 1

n ≥ 1 m ≥ 1 ≡

nm ≥ 1

nm ≥ 1 n ≥ 1

n ≥ 1

m ≥ 1

m ≥ 1

nm ≥ 1 n ≥ 1m ≥ 1

n ≥ 1m ≥ 1nm ≥ 1

Proof. For the first one:

≡
[]

=: ≡
(⊥)

(ρ)D.19 [X⊕ 0]
≡

(⊕0)
[λ]

For the second one, we start by using () on both pairs of
contraction, and then we focus on eliminating each of the four
"crossing" wires represented in red:

The two binary disjunction can be eliminated by pushing
them upward with Lemma D.19 and absorbing them with
Lemma D.14. Then, to eliminate the first red wire, we start
by using Lemma D.19 and obtain:

Using Lemma D.16, we obtain the binary disjunction neces-
sary to use the first part of this lemma, resulting in:

≡
D.19
[λ]

So we successfully eliminated the first red wire. By iterating
the same process for every red wire, we end up with:

≡
D.14
[]

For the third and fourth part, we can use [], (α) and
Lemmas D.14 and D.19 to set up the use the second part of
this lemma nm times.

Proposition E.7. For any object X , we have:

isoX
≡

X

1 1

isoTX

X

X

X

isoTX
≡

1 1

isoX

X

1 1 1 1

1 1

Proof. We proceed by induction on X , writing (IH) for the
induction hypothesis:

• For the base cases 1, 0 and ∅, it is trivial.
• For the case X = B ⊕ C, see Figure 26.
• For the case X = B ⊗ C, see Figure 27.
• For the case X = Y ∥ C, see Figure 28.

Corollary E.8. : For any object X , we have ⊕1,...,1 ◦ isoX is
an isomorphism between X and

⊕dim(X)
i=1 1

Proof. This follows from Proposition E.7 and lemma D.14.

B. Representing Matrices

Definition E.9. For any m×n matrix M with coefficients from
the commutative semiring R, we define the diagram [M] : 1 ∥
· · · ∥ 1→ 1 ∥ · · · ∥ 1 as follows:

m1,1 m1,m mn,1 mn,m:=

n ≥ 0

m ≥ 0

n ≥ 0

m ≥ 0


m1,1 · · · m1,n

...
...

mm,1 · · · mm,n

=

n ≥ 0

m ≥ 0

M

Note that using (R0), (α), [λ] and (ρ), a coefficient
equal to zero in this matrix can be instead represented by
having a "missing" wire. For example, the identity matrix can
be written as follows:

1≡

n ≥ 0

n ≥ 0

n ≥ 0

n ≥ 0

1 0 0

0
. . . 0

0 0 1

 1 ≡

n ≥ 0

n ≥ 0

Proposition E.10. For any two matrices M and N with
dimensions such that the M ×N is defined, we have

[M] ◦ [N] = [M ×N]

Proof. We assume M is a p × m matrix and N is a m × n
matrix.

We use (), (R) and Lemmas D.14 and D.19 to push the
disjunctions (except the one at the very bottom) upward, the
upward Contractions upward, and the downward Contractions
downward.

What remains is a lot of scalars in the middle. Whenever
two scalars are in sequence, we use [R×] to multiply them,
and we note that we are always multiplying a "ni,j" with a
"mj,k" for some i, j, k. For 1 ≤ i ≤ n and 1 ≤ k ≤ p, we
consider the i-th contraction at the top and the k-th contraction
at the bottom. They are linked with m wires, with for scalars
{ni,j ×mj,k | 1 ≤ j ≤ m}. Using (R+), we sum all of those
scalars into

∑
j ni,j ×mj,k.

isoB⊕C

isoTB⊕C

:=

isoB isoC

isoTB isoTC

D.14

E.3

D.19
≡

isoB isoC

isoTB isoTC

(IH)

(⊕)
≡

isoB⊕C

isoTB⊕C

:=

isoB isoC

isoTB isoTC
E.3

(IH)

D.14
≡

Fig. 26: Proof of Proposition E.7, ⊕ case.

isoA B

isoTA B

:=

isoA isoB

isoTA isoTB

E.3≡

isoA isoB

isoTA isoTB

D.28≡

isoA isoB

isoTA isoTB

E.4

D.30
≡

isoA isoB

isoTA isoTB

(IH)

()
≡

isoA B

isoTA B

:=

isoA isoB

isoTA isoTB

E.4

D.29

D.30
≡

isoA isoB

isoTA isoTB

D.14

(IH)
≡

D.19

D.14
≡ E.6≡

Fig. 27: Proof of Proposition E.7, case.

isoX∥B

isoTX∥B

:=

isoX isoB

isoTX isoTB

D.16

D.14

E.3

(α)
≡

isoX isoB

isoTX isoTB

D.28

D.31
≡

isoX isoB

isoTX isoTB

D.14

(IH)
≡

isoX∥B

isoTX∥B

:=
isoX isoB

isoTX isoTB (IH)
≡

D.19

D.14
≡ E.6≡

Fig. 28: Proof of Proposition E.7, ∥ case.

M
D.14

D.31
≡

M

D.28≡

M

E.11

E.12

D.19
≡
M M M

Fig. 29: Proof of Lemma E.13

What remains is exactly the matrix M ×N .

Lemma E.11. For any matrix M , its diagram is duplicated
by disjunctions of Contractions and erased by Null:

≡M
M M

≡M

Proof. For the duplication, we use (), (α) and Lem-
mas D.14 and D.19.

For the erasure we use (0), (0R), [λ], (ρ) and Lem-
mas D.14 and D.19.

Lemma E.12. In order to prove Lemma E.13, we will need
the following equation:

M
≡ M

Proof. We start from both sides, and unfold the definition of
the matrix and then push the Spiders toward the middle using
Lemma D.19 and []. We can then equate both sides using
[R], (R1) (α) and (σ).

Lemma E.13. For any matrix M of size m× n, we have:

M ≡ M ′

n ≥ 0 p ≥ 1

p ≥ 1m ≥ 0

where M ′ defined as the following block matrix of size (pm+
m+ p)× (pn+ n+ p):

M ′ =


M 0 0 0

. . . 0 0
0 M 0 0
0 0 0 M 0
0 0 0 0 id


Proof. We start by doing rewriting as described in Figure 29.
The only thing missing for the middle part to be a matrix M ′

are two big disjunctions covering all the wires. For that we use
Lemmas D.14 and D.19 to move and duplicate the disjunctions
and Lemma D.16 to recompose a bigger disjunction from
smaller ones.

C. Normal Form for the Functional Tensor-Plus Calculus

Lemma E.14. Any A,A′ can be decomposed into the sequen-
tial and parallel compositions of Tensor, Plus, Null, 1 1,1

and their mirrored version.

Proof. Using (), we can decompose A,A′ into more ele-
mentary , following the definition of ≈λρα. For all the case
except A 1 and 1 A, the result is immediate, as shown
in the first two lines of Figure 30. For A 1 and 1 A, we
proceed inductively on A as shown in the third line of that
figure.

Theorem E.15. For every diagram d ∈ FTPR
≡(X ,Y), there

exists a dim(Y)× dim(X) matrix M such that d can be put
in the following normal form:

isoX

X

1 1

isoTY

Y

M
1 1

Proof. We start by using Lemma E.14 to rewrite all the that
are not 1 1,1 or 1,1 1.

We then proceed inductively on d. We start with the
generators as described in Figure 31. Then, for the inductive
case:

• For d = d1◦d2, we simply use Propositions E.7 and E.10
and lemma D.14.

• For d = d1 ∥ idC with C a color, we use Lemma E.13
and remark that it directly builds the normal form (ex-
cept for some disjunctions that can be obtained using
Lemma D.14).

• For d = idC ∥ d2 with C a color, we use Lemma E.2
and then reuse the previous case.

• For d = d1 ∥ d2, we use the bifunctoriality and
associativity of ∥ to reduce this case to the previous cases.

D. Normal Form for the Tensor-Plus Calculus

In this section, we generalise the previous result in presence
of the Unit generator.

Proposition E.16. For every diagram d ∈ TPR
≡(X ,Y), there

exists a (dim(Y) + 1)× (dim(X) + 1) matrix M such that d
can be put in the following pseudo normal form:

≡
(⊕)(α⊕)

A

A

≡
(λ⊕)()()

A

0 ⊕ A

0

A

A

≡
(ρ⊕)()()

0

A

A ⊕ 0

A ⊕ (B ⊕ C)

(A ⊕ B) ⊕ C

A ⊕ (B ⊕ C)

(A ⊕ B) ⊕ C

≡
()(α)

A (B C)

(A B) C

A (B C)

(A B) C

B ⊕ C

A ⊕ C

B ⊕ C

A ⊕ C

≡
(⊕)(⊕)

B C

A C

B C

A C

≡
()()

C ⊕ B

C ⊕ A

C ⊕ B

C ⊕ A

≡
(⊕)(⊕)

C B

C A

C B

C A

≡
()()

≡
(0)(0)

0

0 1

0

0 1

≡
(⊕)(⊕→)

A ⊕ B

(A ⊕ B) 1

A ⊕ B

(A ⊕ B) 1

A B

(A B) 1

()()
≡

()(α)

A B

(A B) 1

()()

A

1 A

≡
(⊕)()

A

1 A

(λρ)

Fig. 30: Decomposing .

A

A

E.7

D.14
≡

isoA
1 1

isoTA

1 1

A B

B A

E.7

D.14

E.2
≡

isoA∥B

1 1

isoTB∥A

1 1

σ0

A B

A⊕B

E.7

E.3

D.14
≡

1 1

isoTA⊕B

1 1

isoA isoB
[λ]

(0)

D.19
≡

isoA∥B

1 1

isoTA⊕B

1 1

A B

A B

E.7

E.4

D.29

D.30

D.14
≡

isoTA B

11

isoA isoB

(ρ)

D.19
≡

isoA∥B

11

isoTA B

11

A

A A

E.7

E.5

D.14
≡

isoTA

1 1

1 1

isoA isoA
[λ]

(0)

D.19
≡

isoA∥A

1 1

isoTA

1 1

A

E.7

D.14

E.5
≡

iso∅

isoTA

1 1

s

A

A

E.7

D.14

[⊕R]

(R)

(R)
≡

isoA
1 1

isoTA

1 1

s s

1 1

1

()
≡

iso1⊗1

1

isoT1

Fig. 31: Normal form for the generators.

isoX

X

1

isoTY

Y

M
1

Proof. We start by noting that if d is functional, then we can
simply use Theorem E.15 and then note that:

isoX

X

1 1

isoTY

Y

M
1 1

≡
(10)

isoX

X

1

isoTY

Y

M
1

≡
(ρ)

isoX

X

1

isoTY

Y

(
M 0
0 0

)
1

(R0)

D.19

If d is not functional, we can factor all the Unit and obtain d1
functional such that:

d d1=

Using Lemma D.22, we can obtain d2 functional such that:

d d2≡

Then, we can use Theorem E.15 on d2:

isoX∥1

X

1 1

isoTY∥1

Y

M
1 1

:=

isoX

X

isoTY

Y

Md ≡
E.15
D.22

≡
[X⊕→]

isoX

X

isoTY

Y

M

isoX

X

isoTY

Y

M

isoX

X

1

isoTY

Y

N
1

≡ ≡
D.14
D.19

(ρ)
()

D.19

Using the n-ary version of [X⊕→], and where N is the
matrix given by:

M =

A B C
D E F
G H x

 N :=

(
A+B +D + E C + F

G+H x

)
with A,B,D,E being dim(Y)×dim(X) matrices, C,F being
dim(Y)× 1 matrices, G,H being 1× dim(X) matrices, and
x being a scalar.

However, when R is not cancellative, this result is not
enough.

Theorem E.17. For every s ∈ R, we define [s]+1 as the
equivalence class of {t | s+1 = t+1}. We arbitrarily chose16

canonical representatives in each of those equivalences class.
For every diagram d ∈ TPR

≡(X ,Y), there exists a
(dim(Y)+1)×(dim(X)+1) matrix M , in which the bottom-
right coefficient is canonical, such that f can be put in the
following normal form:

isoX

X

1

isoTY

Y

M
1

Proof. We start by using Proposition E.16 to obtain a pseudo
normal form, and check the bottom right coefficient, which
we write s. We then use (Can) to replace s by the canonical
representative of [s]+1.

16The axiom of choice might be required for having a unique normal form,
however it is unnecessary for completeness by itself. The method would then
be to give up uniqueness of the normal form but show that all the various
normal forms can be rewritten into one another.

APPENDIX F
UNIQUENESS OF THE NORMAL FORM

In this appendix, we prove the uniqueness of the normal
form, that is that two normal forms with the same semantics
are necessarily equal. The result of completeness (Theo-
rem IV.2) is an immediate consequence of the result of this
appendix combined with the result of the previous appendix
(that every morphism can be put in normal form).

We recall that as defined in Definition B.9, we have a linear,
full and faithful functor ⌊−⌋ which sends any n×m matrix M

with coefficient in R to a morphism of H
(⊕n

i=1 1,
⊕m

j=1 1
)

.

A. The Functional Fragment

Proposition F.1. For any m× n matrix M , we have
u

wwwwwwwwwwwww
v

n ≥ 0

m ≥ 0

M

}

�������������
~

= ⌊M⌋ ∈ H

 n⊕
i=1

1,

m⊕
j=1

1



Proof. For that, we start by noting that the following diagram
has for semantics the i-th (for 1 ≤ i ≤ n) projection from⊕n

i=1 1 to 1:

i − 1 ≥ 0 n − i ≥ 0
:=Πi

Then, using the equational theory we can prove

≡


m1,1 · · · m1,n

...
...

mm,1 · · · mm,n



Πi

ΠT
j

mj,i

D.19
(0)
(0R)
[λ]
(ρ)

Using the soundness (Proposition IV.1), this allows us to check
the result on every coefficient of the matrix.

Corollary F.2 (Uniqueness of the Normal Form). Given any
diagrams d, e ∈ FTPR(X ,Y) with JdK = JeK, if there exists
two matrices N and M such that

isoX

X

1 1

isoTY

Y

M
1 1

e

isoX

X

1 1

isoTY

Y

N
1 1

X

Y

≡d

X

Y

≡

then N = M and d ≡ e.

Proof. Using Proposition E.7 and lemma D.14 we obtain:

1 1

M
1 1

e

isoTX
1 1

isoY

N
1 1

≡d

isoTX

isoY

≡

Taking the semantics J−K, and using the soundness (Proposi-
tion IV.1) we obtain:

J⊕1,...,1 ◦ isoX K ◦ JdK ◦
r
(⊕1,...,1 ◦ isoX)

T
z
= ⌊N⌋

J⊕1,...,1 ◦ isoX K ◦ JeK ◦
r
(⊕1,...,1 ◦ isoX)

T
z
= ⌊M⌋

Since we have JdK = JeK, it follows that ⌊N⌋ = ⌊M⌋, hence
N = M by faithfullness (Proposition B.10), hence d ≡ e.

B. The Whole Calculus

Proposition F.3. For any m× n matrix M , we have
u

wwwwwwwwwwwww
v

n ≥ 0

m ≥ 0

M

}

�������������
~

⊕1

= ⌊M⌋ + ιℓ◦πr ∈ H⊕1

 n⊕
i=1

1,

m⊕
j=1

1



where the "+ ιℓ ◦ πr" corresponds to adding +1 to the
coefficient at the bottom right of the matrix.

Proof. We start by decomposing the diagram in three different
parts:

i − 1 ≥ 0 n − i ≥ 0
:=Πi

Then, we take the semantics J−K⊕1, and for the middle part,
since there is no Unit, the semantics is simply J−K⊕1 = J−K⊕
id1 so we can use Proposition F.1. We then simply compute
the result.

Corollary F.4 (Uniqueness of the Normal Form). Given any
diagrams d, e ∈ TPR(X ,Y) with JdK⊕1 = JeK⊕1, if there
exists two matrices N and M such that

isoX

X

1

isoTY

Y

M
1

e

isoX

X

1

isoTY

Y

N
1

X

Y

≡d

X

Y

≡

then N = M and d ≡ e.

Proof. The proof starts by the same reasonning as Corol-
lary F.2, but using Proposition F.3 instead of Proposition F.1.
We obtain ⌊M⌋ + ιℓ ◦ πℓ = ⌊N⌋ + ιℓ. Using faitfullness and
linearity (Proposition B.10), it means that "M with +1 added
to the bottom right corner’s coefficient" is equal to "N with a
+1 added to the bottom right corner’s coefficient". Using the
fact that the bottom right corners of M and N are canonical,
it follows that M = N .

APPENDIX G
UNIVERSALITY

In this appendix, we prove the universality result of Theo-
rem III.2, both for the functional fragment and for the whole
calculus.

A. The Functional Fragment

For X an object of TPR, we define

IsoX

X

⊕
1

:=
isoX

X

⊕
1

and similarly for IsoTX .

Lemma G.1. The diagram IsoX is an isomorphism (up to ≡)
with for inverse IsoTX .

Proof. To prove IsoX ◦ IsoTX ≡ id, we simply use Proposi-
tion E.7 then (X⊕). To prove IsoTX ◦ IsoX ≡ id, we simply use
start by noting that in Definition E.1, the diagram isoX always
has a disjunction of wires at the end, so using Lemma D.14 we
can eliminate the Plus and obtain IsoTX ◦ IsoX ≡ isoTX ◦ isoX ,
and conclude with Proposition E.7.

Theorem G.2. For any X ,Y objects of FTPR, for every
morphism f ∈ H(JX K , JYK), there exists a diagram d ∈
FTPR(X ,Y) such that JdK = f .

Proof. Using the fullness of ⌊−⌋ (Proposition B.10), there
exists a matrix M such that

⌊M⌋ = JIsoYK ◦ f ◦
r
IsoTX

z

Using Proposition F.1, we then obtain that
u

wwwwwwwwwwwww
v

n ≥ 0

m ≥ 0

M

}

�������������
~

= JIsoYK ◦ f ◦
r
IsoTX

z

Using Lemma G.1, it follows that

u

wwwwwww
v

isoY

Y

⊕
1

}

�������
~

◦

u

wwwwwwwwwwwww
v

n ≥ 0

m ≥ 0

M

}

�������������
~

◦

u

wwwwwww
v

isoX

X

⊕
1

}

�������
~

= f

We then combine the three diagrams into one using func-
toriality of J−K. Given that the diagram isoX always has a
disjunction of wires at the end, we can use Lemma D.14 to
remove the unnecessary ⊕, so we then have

u

wwwwwwwwwwwwww
v

isoX

X

1 1

isoTY

Y

M
1 1

}

��������������
~

= f

B. The Whole Calculus

Theorem G.3. For any X ,Y objects of TPR, for every
morphism f ∈ H⊕1(JX K , JYK), there exists a diagram d ∈
TPR(X ,Y) such that JdK⊕1 = f .

Proof. By definition of H⊕1, there exists g such that f =
g + ιr ◦ πr.

Using the fullness of ⌊−⌋ (Proposition B.10), there exists a
matrix M such that

⌊M⌋ = JIsoY⊕1K ◦ g ◦
r
IsoTX⊕1

z

Unfolding a little bit the definition of IsoY⊕1 and computing
its semantics, we end up with IsoY⊕1 = JIsoYK ⊕ id, hence

⌊M⌋ = (JIsoYK ⊕ id) ◦ g ◦ (
r
IsoTX

z
⊕ id)

Using Proposition F.3, we then obtain that
u

wwwwwwwwwwwww
v

n ≥ 0

m ≥ 0

M

}

�������������
~

= (JIsoYK⊕id)◦g◦(
r
IsoTX

z
⊕id) + ιr◦πr

Since ιr = (nJYK ⊕ id) ◦ ιr and πr = πr ◦ (
r
IsoTX

z
⊕ id), and

using linearity of the composition, we have
u

wwwwwwwwwwwww
v

n ≥ 0

m ≥ 0

M

}

�������������
~

= (JIsoYK⊕id)◦(g + ιr◦πr)◦(
r
IsoTX

z
⊕id)

Hence
u

wwwwwwwwwwwww
v

n ≥ 0

m ≥ 0

M

}

�������������
~

= (JIsoYK ⊕ id) ◦ f ◦ (
r
IsoTX

z
⊕ id)

Using Lemma G.1, it follows that

u

wwwwwww
v

isoY

Y

⊕
1

}

�������
~

◦

u

wwwwwwwwwwwww
v

n ≥ 0

m ≥ 0

M

}

�������������
~

◦

u

wwwwwww
v

isoX

X

⊕
1

}

�������
~

= f

We then combine the three diagrams into one using func-
toriality of J−K. Given that the diagram isoX always has a
disjunction of wires at the end, we can use Lemma D.14 to
remove the unnecessary ⊕, so we then have:

u

wwwwwwwwwwwwww
v

isoX

X

1

isoTY

Y

M
1

}

��������������
~

= f

APPENDIX H
TENSOR-PLUS CALCULUS AS AN INTERNAL LANGUAGE

In this appendix, we prove the claims made in Section IV-D
that our language is an internal language for semiadditive
categories, with a symmetric monoidal structure distributive
over it, and such that the homset of automorphisms over the
latter’s unit are isomorphic to R.

We start by defining the subcategory with a single input
and a single output, then prove our property for the functional
fragment, and then a weaker property for the full language.

A. Restricting to Single Input and Output

We define singleFTPR as the full subcategory of FTPR

where objects are colors, hence morphisms are all the mor-
phisms of FTPR with a single input and a single output. We
define singleTPR similarly.

We want to show that singleFTPR
≡ and FTPR

≡ are equiv-
alent, and so are singleTPR

≡ and TPR
≡. Since the inclusion

functors is full and faithful, we simply need to show that they
are essentially surjective, in other words that:

• for every object X , we can define a color color(X)
• such that we have a natural isomorphism ΨX :

color(X) → X for FTPR
≡

• that is also a natural ismorphism for TPR
≡

We remark that ΨA∥B as defined in Figure 32 is an
isomorphism of FTPR

≡ between the two-colors object A ∥ B
one-color object (A B)⊕(A⊕B). This can be proven either
by showing that its semantics is the identity and then using
Theorem IV.2, or by hand in a very similar way to the proof
that isoA∥B is an isomorphism in the appendices. Iterating the
use of this isomorphism, we can build an isomorphism

ΨA1∥···∥An
: color(A1 ∥ · · · ∥ An) → A1 ∥ · · · ∥ An

where


color(∅) := 0

color(A) := A

color(A ∥ B) := (A B)⊕ (A⊕B)

color(X ∥ B) := color(color(X) ∥ B)

The operation color can be extended as a functor for d ∈
TPR

≡(X ,Y) with color(d) = Ψ−1
Y ◦ d ◦ΨX . It follows that Ψ

is a natural isomorphism, both for TPR
≡ and for FTPR

≡.

B. The Functional Fragment

In Theorem IV.6, we claim that singleFTPR
≡ is an inter-

nal language for "semiadditive categories with an symmetric
monoidal structure which is distributive, together with a semir-
ing isomorphism from R to the homset of the multiplicative
unit" or R-distributive. We provide here a proof of this claim,
in two steps:

1) We prove that singleFTPR
≡ is a R-distributive category.

2) Since in Section III, we provided a categorical semantics
J−K from singleFTPR

≡ to any such category, so we can
see J−K as going from FTPR

≡ to itself. We prove that
J−K : singleFTPR

≡ → singleFTPR
≡ is the identity.

In order to avoid confusion, we keep J−KH for the semantics
toward an arbitrary category H that we know to be a R-
distributive category, for example matrices with coefficients in
R, and we write J−K⟲ for the semantics toward singleFTPR.

And for any two diagrams d ∈ singleFTPR(A,B) and
e ∈ singleFTPR(C,D) we define d ⊕ e and d e as in Fig-
ure 33. We note that Jd⊕ eKH ≡ JdKH ⊕ JeKH and Jd eKH ≡
JdKH JeKH, so using the completeness, we obtain that they
are bifunctors in singleFTPR

≡. Together with the definitions of
Figure 34, and using the completeness to prove the universal
diagrams, we have that (singleFTPR

≡,⊕, 0) is a semiadditive
category. Then, adding the definitions of Figure 35 and using
again the completeness to prove the coherence diagrams,
we have that (singleFTPR

≡, ,1) is a symmetric monoidal
category and satisfies distributivity. Lastly, we have a semiring
isomorphism s ∈ R 7→ [s]1 : 1 → 1, the inversibility coming
from the uniqueness of the normal form (Corollary F.2). This
shows that singleFTPR is indeed a R-distributive category.

We now prove that J−K⟲ is the identity. It is imme-
diate on objects, so we need to prove that for all d ∈
singleFTPR(A,B), JdK⟲ = d.

In order to proceed inductively, we generalize the statement
as follows: for all f ∈ FTPR

≡(X ,Y), JdK⟲ = Ψ−1
Y ◦ d ◦ ΨX ,

with Ψ the natural isomorphism defined in Section H-A. The
proof is an inductive proof that relies on completeness, that is
Theorem IV.2. For every generator of G ∈ FTPR(X ,Y), we
prove

q
JGK⟲

y
H =

q
Ψ−1

Y ◦G ◦ΨX
y

H

using the matrix notation as in Figure 20, this is some simple
matrix computation, for example with G being the Plus ⊕A,B :
A ∥ B → (A⊕B), on the left hand side we have:

q
JGK⟲

y
H = JπrKH =

u

ww
v

(A B) ⊕ (A ⊕ B)

A ⊕ B

}

��
~

H

=

(JAK JBK) JAK (JAK JBK) JBK JAK JBK JAK JBK()
JAK id
JBK id

◦

JAK JBK JAK JBK


(JAK JBK) JAK

(JAK JBK) JBK

JAK JBK id
JAK id
JBK id

=

JAK JBK JAK JBK()
JAK id
JBK id

ΨA∥B :=

A AB B

(A B) ⊕ (A ⊕ B)

ΨT
A∥B :=

A AB B

(A B) ⊕ (A ⊕ B)

(A B) ⊕ (A ⊕ B)

(A B) ⊕ (A ⊕ B)

Fig. 32: Isomorphism between A ∥ B and (A|B) := (A B)⊕ (A⊕B).

d⊕ e

A ⊕ C

B ⊕ D

:= d e d e

A C

B D

:= d e

A ⊕ C

B ⊕ D

A C

B D

d+ d′

A

B

≡ d d′

A

B

Fig. 33: The bifunctors ⊕ and , and induced enrichement +, for d, d′, e in singleFTPR.

∆

A

A ⊕ A

A

A ⊕ A

:=

∇

A ⊕ A

A

A ⊕ A

A

:=

πℓ

A ⊕ B

A

ιℓ

A ⊕ B

A

:=

A ⊕ B

B

:=

A ⊕ B

B

πr

ιr

A

A ⊕ B

A

A ⊕ B

:=

:=

B

A ⊕ B

B

A ⊕ B

zero :=

B

AA

B

Fig. 34: The projections π, injections ι, null zero, diagonal ∆, co-diagonal ∇, and the morphism zero.

α :=

(A B) C

A (B C)

λ :=

1 A

A

σ :=

A B

B A

(A B) C

A (B C) A

1 A

ρ

A

A 1

:=

A 1

A

A B

B A

Fig. 35: The associator α , left-unitor λ , right-unitor ρ and swap σ .

while on the right hand side we have:

q
ΨA∥B

y
H =

JAK JBK JAK JBK()
JAK JBK id

JAK id
JBK id

q
Ψ−1

A⊕B

y
H = JidKH = id

JGKH =

JAK JBK JAK JBK()
JAK id
JBK id

hence:

q
Ψ−1

A⊕B ◦G ◦ΨA∥B
y

H =

JAK JBK JAK JBK()
JAK id
JBK id

=
q
JGK⟲

y
H

Then using completeness for J−KH we have JGK⟲ = Ψ−1
A⊕B ◦

G ◦ΨA∥B .
It remains the two inductive cases. For the sequential

composition, we have

Je ◦ dK⟲ = JeK⟲ ◦ JdK⟲
= Ψ−1

Z ◦ e ◦ΨY ◦Ψ−1
Y ◦ d ◦ΨX

= Ψ−1
Z ◦ e ◦ d ◦ΨX

and for the parallel composition we have

Jd ∥ eK⟲ = m| ◦ (JdK⟲ | JeK⟲) ◦m|

= m| ◦ ((Ψ−1
Y ◦ d ◦ΨX)|(Ψ−1

W ◦ e ◦ΨZ)) ◦m|

= Ψ−1
Y||W ◦ (d | e) ◦ΨX||Z

where ΨX||Z = (ΨX |ΨZ)◦m| is obtained by computing their
semantics by J−KH, remarking that they are equal, and using
the completeness result of Theorem IV.2.

C. The Whole Calculus

In Theorem IV.8, we extended the result to TPR. To prove
that, we match every diagram d ∈ singleTPR(A,B) to a
diagram Fun(d) ∈ singleFTPR(A⊕ 1, B ⊕ 1).

For that, we remind that IsoA : A →
⊕

1 is defined as

isoA
:=

A

⊕
1

IsoA

A

⊕
1

and is an isomorphism as proven in Lemma G.1.
Rewriting the normal form of Theorem E.17 with it, there

exists a matrix M such that d can be written as below. Let
M+1 be "M with +1 added to the bottom right corner’s
coefficient". We define Fun(d) from that M as:

IsoA

A

1

M

IsoTB

B

1

d =

A

B

Fun(d) :=

A ⊕ 1

B ⊕ 1

IsoA⊕1

1

M+1

IsoTB⊕1

1

A ⊕ 1

B ⊕ 1

We note that Fun(d) is already in the normal form given by
Theorem E.15. To prove an equivalence of category between
singleTPR

≡ and (singleFTPR
≡)

⊕1, we check that Fun(−) is
a well defined full and faithful functor that is essentially
surjective.

a) Well Defined: We need to check the soundness of
Fun(−) with respect to the equational theory. This follows
from the uniqueness of the normal form, that is Corollary F.4.

b) Functor: We consider d ∈ singleTPR(A,B) and
e ∈ singleTPR(B,C). We write M and N their respective
matrices when put in normal form, and P the matrix of the
normal form of e ◦ d. From Proposition F.3 it follows that
P+1 is the result of the matrix product of M+1 by N+1.
So looking at Fun(e) ◦ Fun(d), we can use Lemma G.1 to

eliminate the Iso at the middle, then Proposition E.10 to merge
M+1 and N+1 into their product P+1, then it follows that
Fun(e) ◦ Fun(d) = Fun(e ◦ d).

c) Full: We consider f ∈ (singleFTPR
≡)

⊕1(A,B). In
particular, f = g + ιr ◦ πr for some g ∈ singleFTPR

≡(A ⊕
1, B ⊕ 1). Putting g in normal form, there exists a matrix M
such that we can rewrite f as:

f =

IsoA⊕1

1

M

IsoTB⊕1

1

A ⊕ 1

B ⊕ 1

Then, using the following rewriting:

IsoA⊕1

⊕
1

A ⊕ 1

=

11

IsoA

A ⊕ 1

1

≡ IsoA

A ⊕ 1

1

D.21
[λ]

⊕
1 1

⊕
1 1

≡ IsoA

A ⊕ 1

1

(X⊕)

D.19

⊕
1 1

E.3

≡
D.14

IsoA

A ⊕ 1

1
⊕

1 1

We obtain

f =

1

M

IsoTB

1

B ⊕ 1

IsoA

A ⊕ 1

Unfolding the definition of M , and relying on Lemmas D.14
and D.19 to move around the disjunctions of wire, and (R1)
and (R+) to "add" the rightmost wire to the leftmost coefficient
of M , we obtain:

f =

1

IsoTB

1

B ⊕ 1

IsoA

A ⊕ 1

IsoA⊕1

1

M+1

IsoTB⊕1

1

A ⊕ 1

B ⊕ 1

= M+1

Hence f is of the form Fun(d) for some d.
d) Faithful: In Theorem E.17, the bottom-right coeffi-

cient of M is expected to be canonical. As such, the operation
M 7→ M+1 is injective. So two diagrams d ̸≡ e leads
to two distinct matrices M,N , hence two distinct matrices
M+1, N+1, then using uniqueness of the normal form Corol-
lary F.2 it leads to two distinct diagrams Fun(d) ̸≡ Fun(e).

e) Essentially Surjective: The functor Fun(−) is surjec-
tive on the objects, hence essentially surjective.

	Introduction
	Strategy followed in the paper.
	Contributions and plan of the paper.

	The Tensor-Plus Calculus
	The Wires: the Objects of our Category
	The Diagrams: the Morphisms of our Category
	Examples
	The Compact Closure

	Categorical Semantics
	The Categorical Framework
	Additional Structures for Non Functional Morphisms
	The Semantics

	The Equational Theory
	The Functional Case
	The General Case
	Back to the Examples
	Tensor-Plus Calculus as an Internal Language

	Conclusion
	References
	Appendix A: Commutative Semirings and Semimodules
	Commutative Semirings
	Semimodules

	Appendix B: Category Theory
	The Monoidal Structure
	The Semiadditive Structure
	Adding Distributivity
	The Parallel Monoidal Structure
	Adding the Unit: the "1" Category
	Adding the Unit: the Double Kleisli Category
	Matrix Semantics

	Appendix C: Soundness of the Equational Theory
	The Easy Equations
	The Hard Equations
	Finishing the Functional Fragment
	The Full Language

	Appendix D: Notable Lemmas for the Equational Theory
	Induced Equations
	The n-ary Nodes
	The Spider
	The Compact Closure
	The Disjunctive Collection of Wires
	Conjunction of Disjunctions of Wires

	Appendix E: Existence of the Normal Form
	Converting the Objects
	Representing Matrices
	Normal Form for the Functional Tensor-Plus Calculus
	Normal Form for the Tensor-Plus Calculus

	Appendix F: Uniqueness of the Normal Form
	The Functional Fragment
	The Whole Calculus

	Appendix G: Universality
	The Functional Fragment
	The Whole Calculus

	Appendix H: Tensor-Plus Calculus as an Internal Language
	Restricting to Single Input and Output
	The Functional Fragment
	The Whole Calculus

